精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知△ABE,ABAE的垂直平分線m1、m2分別交BE于點C、D,且BC=CD=DE

(1)求證:△ACD是等邊三角形;

(2)求∠BAE的度數.

【答案】1)見解析;(2120°

【解析】

1)根據線段垂直平分線性質得AC=BC,AD=DE,證AC=CD=AD可得;(2)根據等邊三角形性質得∠CAD=ACD=ADC=60°,根據等腰三角形性質得∠ABC=BAC=ACD=30°,∠EAD=DEA=ADC=30°,故∠BAE=BAC+CAD+EAD.

證明:1)∵ABAE邊上的垂直平分線m1、m2BE分別為點C、D

AC=BC,AD=DE,

∴∠B=BAC,∠E=EAD

BC=CD=DE,

AC=CD=AD,

∴△ACD是等邊三角形.

2)∵△ACD是等邊三角形,

∴∠CAD=ACD=ADC=60°,

AC=BC,AD=DE,

∴∠ABC=BAC=ACD=30°,∠EAD=DEA=ADC=30°

∴∠BAE=BAC+CAD+EAD=120°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數y=x的圖象上,從左向右依次記為A1、A2、A3、An,已知第1個正方形中的一個頂點A1的坐標為(11),則點A2015的縱坐標為( )

A.2015B.2014C.22014D.22015

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩塊等腰直角三角板△ABC△DEC如圖擺放,其中∠ACB=∠DCE=90°,FDE的中點,HAE的中點,GBD的中點.

(1)如圖1,若點D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FHFG的數量關系為______和位置關系為______;

(2)如圖2,若將三角板△DEC繞著點C順時針旋轉至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;

(3)如圖3,將圖1中的△DEC繞點C順時針旋轉一個銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結論,不用證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(10)如圖,將兩塊全等的三角板拼在一起,其中△ABC的邊BC在直線l上,AC⊥BCAC = BC△EFP的邊FP也在直線l上,邊EF與邊AC重合,EF⊥FPEF = FP。

1)在圖中,請你通過觀察、測量,猜想并寫出ABAP所滿足的數量關系和位置關系;

2)將三角板△EFP沿直線l向左平移到圖的位置時,EPAC于點Q,連接AP、BQ。猜想并寫出BQAP所滿足的數量關系和位置關系,并證明你的猜想;

3)將三角板△EFP沿直線l向左平移到圖的位置時,EP的延長線交AC的延長線于點Q,連接AP、BQ。你認為(2)中猜想的BQAP所滿足的數量關系和位置關系還成立嗎?若成立,給出證明;若不成立,請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經過市場調查,發現這種商品單價每降低1元,其銷量可增加10件.

(1)求商場經營該商品原來一天可獲利潤多少元?

(2)設后來該商品每件降價x元,,商場一天可獲利潤y元.

①若商場經營該商品一天要獲利潤2160元,則每件商品應降價多少元?

②求出yx之間的函數關系式,結合題意寫出當x取何值時,商場獲利潤不少于2160元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點Ax軸上,坐標為(0,3),點Bx軸上.

(1)在坐標系中求作一點M,使得點M到點A,點B和原點O這三點的距離相等,在圖中保留作圖痕跡,不寫作法;

(2)若sinOAB=,求點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一副三角板按如圖放置,則下列結論:①如果∠2=30°,則有ACDE;②如果BCAD,則有∠2=45°;③∠BAE+CAD隨著∠2的變化而變化;④如果∠2=30°,那么∠4=45°;正確的(

A.①②③

B.①②④

C.①③④

D.①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結AC,過點C作直線lAB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結CD,設直線PB與直線AC交于點E.

(1)求∠BAC的度數;

(2)當點DAB上方,且CDBP時,求證:PC=AC;

(3)在點P的運動過程中

①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數;

②設⊙O的半徑為6,點E到直線l的距離為3,連結BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉α (0°<α <360°),得到線段AC,連接DC’,當DC’//BC時,旋轉角度α 的值為_________,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视