【題目】(1)如圖1,D是等邊三角形ABC邊BA上一動點(點D)與點B不重合,連接CD,以CD為邊在BC上方作等邊三角形DCE,連接AE,你能發現AE與BD之間的數量關系嗎?并證明你發現的結論.
(2)如圖二,當動點D在等邊三角形ABC邊BA上運動時(點D與點B不重合),連接DC,以DC為邊在其上方、下方分別作等邊三角形DCE和等邊三角形DCF,連接AE,BF,探究AE,BF與AB有何數量關系?并證明你探究的結論.
(3)如圖三,當動點D在等邊三角形ABC邊BA的延長線上運動時,其他作法與圖2相同,若AE=8,BF=2,請直接寫出AB= .
【答案】(1)見解析。(2)見解析。(3)6.
【解析】
(1)由等邊三角形的性質可得AC=BC,DC=CE,∠ACB=∠DCE=60°,可得∠ACE=∠BCD,根據“SAS”可證△BCD≌△ACE,即AE=BE;
(2)由等邊三角形的性質可得AC=BC,DC=CF,∠ACB=∠DCF=60°,可得∠FCB=∠DCA,根據“SAS”可證△ACD≌△BCF,即BF=AD,即可得AB=AE=BF;
(3)根據等邊三角形的性質和全等三角形的判定和性質可得AE=BD,BF=AD,即可求AB的長.
(1)AE=BD
理由如下:∵△ABC和△DCE是等邊三角形
∴AC=BC,DC=CE,∠ACB=∠DCE=60°,
∴∠ACE=∠BCD,且AC=BC,DC=CE
∴△BCD≌△ACE(SAS)
∴AE=BD
(2)AB=AE+BF,
理由如下:∵△ABC和△DCF是等邊三角形,
∴AC=BC,CF=CD,∠FCD=∠BCA=60°,
∴∠FCB=∠DCA,且AC=BC,CF=CD,
∴△ACD≌△BCF(SAS)
∴BF=AD,
由(1)可知,BD=AE,
∵AB=BD+AD,
∴AB=AE+BF
(3)∵△ABC和△DCE是等邊三角形,
∴AC=BC,DC=CE,∠ACB=∠DCE=60°,
∴∠BCD=∠ACE,且AC=BC,DC=CE,
∴△BCD≌△ACE(SAS)
∴AE=BD=8,
∵△ABC和△DCF是等邊三角形,
∴AC=BC,CF=CD,∠FCD=∠BCA=60°,
∴∠FCB=∠DCA,且AC=BC,CF=CD,
∴△ACD≌△BCF(SAS)
∴BF=AD=2,
∵AB=BD﹣AD
∴AB=8﹣2=6
故答案為:6
科目:初中數學 來源: 題型:
【題目】如圖,長方形的各邊分別平行于
軸或
軸,物體甲和物體乙分別由點
同時出發,沿長方形
的邊作環繞運動.物體甲按逆時針方向以2個單位/秒勻速運動,物體乙按順時針方向以4個單位/秒勻速運動,則兩個物體運動后的第2020次相遇地點的坐標是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,(1)∠BED與∠CBE是直線________,________被直線________所截形成的________角;
(2)∠A與∠CED是直線________,________被直線________所截形成的________角;
(3)∠CBE與∠BEC是直線________,________被直線________所截形成的________角;
(4)∠AEB與∠CBE是直線________,________被直線________所截形成的________角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△ABC三個頂點的坐標分別為A(﹣2,﹣1),B(﹣4,1),C(﹣3,3).△ABC關于原點O對稱的圖形是△A1B1C1 .
(1)畫出△A1B1C1;
(2)BC與B1C1的位置關系是 , AA1的長為;
(3)若點P(a,b)是△ABC 一邊上的任意一點,則點P經過上述變換后的對應點P1的坐標可表示為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,射線AM∥BN,點E,F,D在射線AM上,點C在射線BN上,且∠BCD=∠A,BE平分∠ABF,BD平分∠FBC.
(1)求證:AB∥CD.
(2)如果平行移動CD,那么∠AFB與∠ADB的比值是否發生變化?若變化,找出變化規律;若不變,求出這兩個角的比值.
(3)如果∠A=100°,那么在平行移動CD的過程中,是否存在某一時刻,使∠AEB=∠BDC?若存在,求出此時∠AEB的度數;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索:小明在研究數學問題:已知AB∥CD,AB和CD都不經過點P,探索∠P與∠C的數量關系.
發現:在如圖中,:∠APC=∠A+∠C;如圖
小明是這樣證明的:過點P作PQ∥AB
∴∠APQ=∠A(_ __)
∵PQ∥AB,AB∥CD.
∴PQ∥CD(__ _)
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
(1)為小明的證明填上推理的依據;
(2)應用:①在如圖中,∠P與∠A、∠C的數量關系為__ _;
②在如圖中,若∠A=30 ,∠C=70
,則∠P的度數為__ _;
(3)拓展:在如圖中,探究∠P與∠A,∠C的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,將△ABC繞點C逆時針旋轉α角(0°<α<90°),得到△A1B1C,連接BB1,設CB1交AB于D,A1B1分別交AB,AC于E,F
(1)求證:△CBD≌△CA1F;
(2)試用含α的代數式表示∠B1BD;
(3)當α等于多少度時,△BB1D是等腰三角形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com