【題目】劉同學在課外活動中觀察吊車的工作過程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點距離地面的高
米.
米,當吊臂頂端由
點抬升至
點(吊臂長度不變時),地面
處的重物(大小忽略不計)被吊至
處,緊繃著的吊纜
.且
.
(1)求此重物在水平方向移動的距離及在豎直方向移動的距離;
(2)若這臺吊車工作時吊桿最大水平旋轉角度為,吊桿與水平線的傾角可以從
轉到
,求吊車工作時,工作人員不能站立的區域的面積.
【答案】(1)3米,米
(2)平方米
【解析】
(1)先過點作
于點
,交
于點
,則得出
,通過解直角三角形
和
得出
與
,從而求出
;先解直角三角形
,得出
,然后求出
;
(2)吊桿端點最遠水平距離為吊桿與水平線的傾角為
時,所以代入數值求解直角三 角形即可求出
的長,即吊車工作時工作人員不能站立的區域的半徑,由圓的面積的公式即可去求出區域面積.
解:(1)過點作
于點
,交
于點
根據題意可知
在中,
,
,在
中,
,
在中,
答:此重物在水平方向移動的距離是3米,此重物在豎直方向移動的距離是
米;
(2)當水平距離為吊桿與水平線的傾角為時,即吊車工作時工作人員不能站立的區域的半徑,
在中,
,
這臺吊車工作時吊桿最大水平旋轉角度為
工作人員不能站立的區域的面積為:
(平方米)
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABCD的頂點A點,D點分別在x軸、y軸上,對角線BD∥x軸,反比例函數的圖象經過矩形對角線的交點E,若點A(2,0),D(0,4),則k的值為( )
A.16B.20C.32D.40
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC.
(1)試用直尺和圓規在AC上找一點D,使AD=BD(不寫作法,但需保留作圖痕跡).
(2)在(1)中,連接BD,若BD=BC,求∠A的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線與
軸交于
,
兩點,與
軸交于點
,且
.直線
與拋物線交于
,
兩點,與
軸交于點
,點
是拋物線的頂點,設直線
上方的拋物線上的動點
的橫坐標為
.
(1)連接,求證:四邊形
是平行四邊形;
(2)連接,
,當
為何值時
?
(3)在直線上是否存在一點
,使
為等腰直角三角形?若存在,請求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法不正確的是( )
A.機場對乘客進行安檢不能采用抽樣調查
B.一組數據10,11,12,9,8的平均數是10,方差是2
C.“清明時節雨紛紛”是隨機事件
D.一組數據6,5,3,5,4的眾數是5,中位數是3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示,在三角形紙片ABC中,∠BAC=78°,AC=10.數學實踐課上,小敏用5張這樣的三角形紙片拼成了一個內外都是正五邊形的圖形(如圖2所示),并通過上網查到以下幾個數據:sin78°≈0.98,cos78°≈0.21,tan78°≈4.7.請你幫助她解決下列問題:
(1)∠ABC= °;
(2)求正五邊形GHMNC的邊GC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線經過點
和點
,頂點為
.
(1)求、
的值;
(2)若的坐標為
,當
時,二次函數
有最大值
,求
的值;
(3)直線與直線
、直線
分別相交于
、
,若拋物線
與線段
(包含
、
兩點)有兩個公共點,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,菱形ABCD的頂點B在x軸的正半軸上,點A坐標為(-4,0),點D的坐標為(-1,4),反比例函數的圖象恰好經過點C,則k的值為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com