精英家教網 > 初中數學 > 題目詳情

【題目】在△ABC 內任取一點 P (如圖①),連接 PB、PC,探索∠BPC 與∠A,∠ABP,∠ACP 之間的數量關系,并證明你的結論:當點 P 在△ABC 外部時 (如圖②),請直接寫出∠BPC 與∠A,∠ ABP,∠ACP 之間的數量關系。

【答案】見解析

【解析】

根據三角形的內角和和四邊形的內角和即可得到結論.

ABC內任取一點P,

則∠BPC=A+ABP+ACP,

理由:∵∠BPC=180°(PBC+PCB),

∴∠A+ABP+PBC+ACP+PCB=180°,

A+ABP+ACP=180°(PBC+PCB)

∴∠BPC=A+ABP+ACP;

當點PABC外部時,

四邊形ABPC內角和為360°,

∴∠BPC+A+ABP+ACP=360°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖是某學校高中兩個班的學生上學時步行、騎車、乘公交、乘私家車人數的扇形統計圖,已知乘公交人數是乘私家車人數的2.若步行人數是18人,則下列結論正確的是( )

A. 被調查的學生人數為90

B. 乘私家車的學生人數為9

C. 乘公交車的學生人數為20

D. 騎車的學生人數為16

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知直線l1l2,直線l3和直線l1l2交于點CD,點P是直線l3上一動點

1)如圖1,當點P在線段CD上運動時,PACAPB,PBD之間存在什么數量關系?請你猜想結論并說明理由.

2)當點PC、D點的外側運動時(P與點C、D不重合,如圖2和圖3),上述(1)中的結論是否還成立?若不成立,請直接寫出PAC,APB,PBD之間的數量關系,不必寫理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】古希臘時期,人們認為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(,稱為黃金比例),如圖,著名的“斷臂維納斯”便是如此,此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是,若某人的身材滿足上述兩個黃金比例,且頭頂至咽喉的長度為,則其升高可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某機器零件的橫截面如圖所示,按要求線段ABDC的延長線相交成直角才算合格,一工人測得∠A=23°,D=31°,AED=143°,請你幫他判斷該零件是否合格:___.(合格不合格”)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙ORtABC的斜邊AB相切于點D,與直角邊AC相交于E、F兩點,連結DE,已知∠B=30°,O的半徑為12,弧DE的長度為

1)求證:DEBC;

2)若AF=CE,求線段BC的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,DBC邊上一點,EAD的中點,過點ABC的平行線交CE的延長線于點F,且AFBD,連接BF

1)求證:△AEF≌△DEC

2)若ABAC,試判斷四邊形AFBD的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數是甲工程隊單獨完成修路任務所需天數的1.5倍

(1)求甲、乙兩個工程隊每天各修路多少千米?

(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】根據條件求二次函數的解析式:

(1)拋物線的頂點坐標為(﹣1,﹣1),且與y軸交點的縱坐標為﹣3

(2)拋物線在x軸上截得的線段長為4,且頂點坐標是(3,﹣2).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视