解:(1)令y=0,即x
2-2x-3=0,則x=3,x=-1,
∴A(-1,0),B(3,0);
令x=0,即y=-3,
∴C(0,-3);
由于y=x
2-2x-3=(x-1)
2-4,
故頂點D(1,-4).
(2)相似,理由如下:
∵A(-1,0),B(3,0),C(0,-3),D(1,-4),
∴OA=1,OC=3,AC=

;
CD=

,BC=3

,BD=2

;
∴

=

,
故△AOC∽△DCB.
(3)分別過C、F、G作FG、CG、CF的平行線,三線交于H
1、H
2、H
3(如圖);
則四邊形CFGH
1、四邊形CFH
2G、四邊形H
3FGC都是平行四邊形;
過G作GM⊥x軸于M;

由于OB=OC=3,則∠OBC=45°;
易知BG=4t,則BM=MG=2

t,OM=3-2

t;
故G(3-2

t,-2

t);
由于四邊形CFGH
1、四邊形CFH
2G都是平行四邊形,
故H
1G=GH
2=CF=

t,
∴H
1(3-3

t,-2

t),H
2(3-

t,-2

t);
把H
1代入拋物線的解析式中得:
(3-3

t)
2-2(3-3

t)-3=-2

t,
即9t
2-5

t=0;
解得t=0(舍去),t=

;
當t=

時,H
1(-

,-

);
把H
2代入拋物線的解析式中得:
(3-

t)
2-2(3-

t)-3=-2

t,
即t
2-

t=0;
解得t=0(舍去),t=

;
當t=

時,H
2(1,-4);
過G作GP⊥y軸于P,過H
3作H
3Q⊥y軸于Q;
則有H
3Q=GP-CF=3-2

t-

t=3-3

t,CQ=CP=3-2

t;
∴OQ=OC+CQ=6-2

t;
∴H
3(3

t-3,2

t-6);
將H
3代入拋物線的解析式中,有:
(3

t-3)
2-2(3

t-3)-3=2

t-6,
即9t
2-13

t+9=0,
解得t=

;
當t=

時,H
3(

,

);
當t=

時,H
4(

,

).
故存在符合條件的H點,且:
當t=

時,H
1(-

,-

);
當t=

時,H
2(1,-4);
當t=

時,H
3(

,

);
當t=

時,H
4(

,

).
分析:(1)拋物線的解析式中,令y=0,可求得點A、B的坐標,令x=0,可求得點C的坐標;將拋物線的解析式化為頂點坐標式,即可求得點D的坐標.
(2)根據已知的A、B、C、D的坐標,可求得兩個三角形各自的三邊長,然后證△BCD、△AOC的對應邊成比例即可.
(3)此題可先求出滿足以C、F、H、G四點為頂點的平行四邊形的H點坐標,然后代入拋物線的解析式中進行驗證即可.
分別過C、F、G作FG、CG、CF的平行線,那么這些平行線的交點即為所求的H點,設為H
1、H
2、H
3,過G作GN⊥x軸于N,由于∠OBC=45°,即可根據BG的長表示出GN、BN的值,而CP的長易求得,根據平行四邊形的性質(兩組對邊平行且相等),即可得到H
1、H
2的坐標,然后將它們代入拋物線的解析式中進行驗證即可,若所得方程有解,則所得的解即為符合條件的H點坐標,若無解,則是說明不存在符合條件的H點.H
3的坐標求法同上.
點評:此題考查了二次函數圖象與坐標軸交點坐標的求法、相似三角形的判定和性質、平行四邊形的判定等重要知識,綜合性強,難度較大.在涉及動點問題時,一般要考慮分類討論思想的運用.