【題目】二次函數y=ax2+bx+c,自變量x與函數y的對應值如表:
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | … |
y | … | 4 | 0 | ﹣2 | ﹣2 | 0 | 4 | … |
下列說法正確的是( )
A.拋物線的開口向下
B.當x>﹣3時,y隨x的增大而增大
C.二次函數的最小值是﹣2
D.拋物線的對稱軸是x=﹣
【答案】D
【解析】解:將點(﹣4,0)、(﹣1,0)、(0,4)代入到二次函數y=ax2+bx+c中,得: ,解得:
,
∴二次函數的解析式為y=x2+5x+4.
A、a=1>0,拋物線開口向上,A不正確;
B、﹣ =﹣
,當x≥﹣
時,y隨x的增大而增大,B不正確;
C、y=x2+5x+4= ﹣
,二次函數的最小值是﹣
,C不正確;
D、﹣ =﹣
,拋物線的對稱軸是x=﹣
,D正確.
故選D.
【考點精析】掌握二次函數的性質是解答本題的根本,需要知道增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
科目:初中數學 來源: 題型:
【題目】小蘇和小林在如圖1所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應關系如圖2所示.下列敘述正確的是( )
A.兩人從起跑線同時出發,同時到達終點
B.小蘇跑全程的平均速度大于小林跑全程的平均速度
C.小蘇前15s跑過的路程大于小林前15s跑過的路程
D.小林在跑最后100m的過程中,與小蘇相遇2次
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為7,則GE+FH的最大值為( )
A.10.5
B.7 ﹣3.5
C.11.5
D.7 ﹣3.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E是四邊形ABCD的對角線BD上的一點,∠BAE=∠CBD=∠DAC.
(1)求證:DEAB=BCAE;
(2)求證:∠AED+∠ADC=180°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2﹣4x﹣5與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E.
(1)求直線BC的解析式;
(2)當線段DE的長度最大時,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,直線l與⊙O相切于點C,AD⊥l,垂足為D,AD交⊙O于點E,連接OC、BE.若AE=6,OA=5,則線段DC的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD沿直線EF折疊,使點C與點A重合,折痕交AD于點E,交BC于點F,連接AF、CE,
(1)求證:四邊形AFCE為菱形;
(2)設AE=a,ED=b,DC=c.請寫出一個a、b、c三者之間的數量關系式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com