精英家教網 > 初中數學 > 題目詳情

【題目】二次函數的部分圖象如圖,圖象過點(﹣10),對稱軸為直線,下列結論:①;;;④當時, 的增大而增大.其中正確的結論有(  

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】試題分析:根據拋物線的對稱軸為直線x=﹣=2,則有4a+b=0正確;

觀察函數圖象得到當x=﹣3時,函數值y0,則9a﹣3b+c0,即9a+c3b,故錯誤;

由于x=﹣1時,y=0,則a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根據拋物線開口向下得a0,于是有8a+7b+2c0,故正確;

由于對稱軸為直線x=2,根據二次函數的性質得到當x2時,yx的增大而減小,故錯誤.

故選:B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,濕地景區岸邊有三個觀景臺、、.已知m, m,點位于點的南偏西60. 7°方向,點位于點的南偏東66. 1°方向.

(1)求的面積;

(2)景區規劃在線段的中點處修建一個湖心亭,并修建觀景棧道.試求間的距離.(結果精確到0. 1 m,參考數據: , , , , )

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.

(1)用含x的代數式表示線段CF的長;

(2)如果把CAE的周長記作CCAEBAF的周長記作CBAF,設=y,求y關于x的函數關系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題

1)計算:﹣32÷(﹣32+3×(﹣2+|4|

2)計算:

3)化簡:(5a2+2a1)﹣4[324a+a2]

4)化簡:3x2[7x﹣(4x3)﹣2x2]

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1為某月的月歷表,圖2型的框圖,且框圖中五個小正方形與月歷表中每個小正方形大小相同.觀察并思考下列問題:

1)用圖2框圖在月歷表中任意圈出5個數(日期),這5個數的和的最小值是   ,最大值是   

2)在該月歷表中可以得到   個這樣的框圖;

3)如果型框圖中5個數的和為80,則圖二中字母a代表的數字是多少?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點E、F分別是ABCD的邊BC、AD上的點,且BE=DF.

(1)試判斷四邊形AECF的形狀;

(2)若AE=BE,BAC=90°,求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一頂點重合的兩個大小完全相同的邊長為3的正方形ABCD和正方形AB′C′D′,如圖所示,∠DAD′=45°,邊BC與D′C′交于點O,則四邊形ABOD′的周長是( 。

A. 6 B. 6 C. 3 D. 3+3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形紙片中,,,折疊紙片使點落在邊上的處,折痕為.過點,連接.

1)求證:四邊形為菱形;

2)當點邊上移動時,折痕的端點,也隨之移動.

①當點與點重合時(如圖),求菱形的邊長;

②若限定分別在邊,上移動,求出點在邊上移動的最大距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q再次展平,連接BN,MN,延長MN交BC于點G.有如下結論:①∠ABN= 60°;②AM=1;③;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是.其中正確結論的序號是___________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视