【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為( )
A. B. 3 C. 1 D.
【答案】A
【解析】首先利用勾股定理計算出AC的長,再根據折疊可得△DEC≌△D′EC,設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.
解:∵AB=3,AD=4,
∴DC=3,
∴AC==5,
根據折疊可得:△DEC≌△D′EC,
∴D′C=DC=3,DE=D′E,
設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
在Rt△AED′中:(AD′)2+(ED′)2=AE2,
22+x2=(4﹣x)2,
解得:x=,
故選:A.
“點睛”此題主要考查了圖形的翻著變換,以及勾股定理的應用,關鍵是掌握折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.
科目:初中數學 來源: 題型:
【題目】如圖,∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,從左起第1個等邊三角形的邊長記為a1,第2個等邊三角形的邊長記為a2,以此類推.若OA1=1,則a2017= ______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題8分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(-2,-1)、B(-1,1)、C(0,-2).
(1)點B關于坐標原點O對稱的點的坐標為 ( );
(2)將△ABC繞點C順時針旋轉90°,畫出旋轉后得到的△A1B1C;
(3)求過點B、B1的一次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉α度到△A1B1C1的位置,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E. F.
(1)求證:△BCF≌△BA1D.
(2)當∠C=α度時,判定四邊形A1BCE的形狀并說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小王剪了兩張直角三角形紙片,進行了如下的操作:
(1)如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE,若AC=6cm,BC=8cm,求CD的長.
(2)如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=6cm,BC=8cm,求CD的長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列運算正確的是 ( )
A. (2a2)3=6a6 B. a3.a2=a5 C. 2a2+4a2=6a4 D. (a+2b)2=a2+4b2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,已知點A (1,2),B (-2, 2), C (-2, -2), D (1 ,-2), 把一根長為2017個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A→D→C→B→A……的順序緊繞在四邊形ABCD的邊上,則細線的另一端所在位置的點的坐標是 ( )
A. (1, 2 ) B. ( 0, 2 ) C. (1,1) D. (1 ,-2 )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列條件中,不能判定四邊形是平行四邊形的是( )
A. 對角線互相平分B. 兩組對邊分別相等
C. 對角線互相垂直D. 一組對邊平行,一組對角相等
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com