精英家教網 > 初中數學 > 題目詳情
如圖中曲線是反比例函數的圖象的一條.
(1)這個反比例函數圖象的另一條位于哪個象限?求出常數m的取值范圍;
(2)若一次函數的圖象與反比例函數的圖象交于點A,與y軸、x軸分別交于點B、C,如圖所示.已知△AOC的面積為2,求m的值;
(3)設點M(x,y)是線段BC上的一動點,過M作x軸的垂線,垂足為N,作y軸的垂線,垂足為E,求矩形MNOE面積的最大值.

【答案】分析:(1)根據反比例函數的性質,當k<0時,圖象在第二、四象限,即可得到答案;
(2)首先利用一次函數解析式算出C點坐標,再根據△AOC的面積為2可以得到A點縱坐標,然后再次利用一次函數解析式算出A點橫坐標,進而得到A點坐標,再把A點坐標代入反比例函數解析式即可算出m的值;
(3)根據題意畫出圖形,根據解析式可得y=-x+,再代入S矩形MNOE=xy,可得到S=,再利用配方法可得x=1時矩形MNOE的面積最大.
解答:解:(1)∵反比例函數圖象的一條在第二象限,
∴這個反比例函數圖象的另一條位于第四象限,
∴m-5<0,
∴m<5;

(2)當y=0時,-x+=0,x=2,
∴C(2,0),
設A(x1,y1),則S△AOC=×OC×y1=×2×y1=2,
∴y1=2,
∴y1=-x1+=2,
解得x1=-3,
∴A(-3,2),
把A點坐標代入y=中得:
2=,
解得:m=-1;

(3)S矩形MNOE=xy=,
==
∴當M點的橫坐標為1時,矩形MNOE的面積最大,最大面積是
點評:此題主要考查了反比例函數與一次函數的綜合運用,以及三角形的面積公式,關鍵是熟練掌握反比例函數的性質,熟練掌握函數圖象上的點與函數關系式的關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•中江縣二模)如圖中曲線是反比例函數y=
m-5
x
的圖象的一條.
(1)這個反比例函數圖象的另一條位于哪個象限?求出常數m的取值范圍;
(2)若一次函數y=-
2
5
x+
4
5
的圖象與反比例函數的圖象交于點A,與y軸、x軸分別交于點B、C,如圖所示.已知△AOC的面積為2,求m的值;
(3)設點M(x0,y0)是線段BC上的一動點,過M作x軸的垂線,垂足為N,作y軸的垂線,垂足為E,求矩形MNOE面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖中曲線是反比例函數數學公式的圖象的一條.
(1)這個反比例函數圖象的另一條位于哪個象限?求出常數m的取值范圍;
(2)若一次函數數學公式的圖象與反比例函數的圖象交于點A,與y軸、x軸分別交于點B、C,如圖所示.已知△AOC的面積為2,求m的值;
(3)設點M(x0,y0)是線段BC上的一動點,過M作x軸的垂線,垂足為N,作y軸的垂線,垂足為E,求矩形MNOE面積的最大值.

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業升學考試(四川綿陽卷)數學 題型:解答題

右圖中曲線是反比例函數的圖象的一支.
(1)這個反比例函數圖象的另一支位于哪個象限?常數n的取值范圍是什么?
(2)若一次函數的圖象與反比例函數的圖象交于點A,與x軸交于點B,△
AOB的面積為2,求n的值.

查看答案和解析>>

科目:初中數學 來源:2011-2012學年浙江省寧波市北侖區九年級學業考試一模數學卷 題型:解答題

右圖中曲線是反比例函數的圖象的一支.

1.這個反比例函數圖象的另一支位于哪個象限?常數n的取值范圍是什么?

2.若一次函數的圖象與反比例函數的圖象交于點A,與x軸

交于點B,△AOB的面積為2,求n的值.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视