精英家教網 > 初中數學 > 題目詳情

【題目】太陽能光伏建筑是現代綠色環保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結果精確到0.1米) (參考數據:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

【答案】解:∵∠BDC=90°,BC=10,sinB= , ∴CD=BCsinB=10×0.59=5.9,
∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,
∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,
∴在Rt△ACD中,tan∠ACD=
∴AD=CDtan∠ACD=5.9×0.32=1.888≈1.9(米),
則改建后南屋面邊沿增加部分AD的長約為1.9米.
【解析】在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數定義求出CD的長,在直角三角形ACD中,由∠ACD度數,以及CD的長,利用銳角三角函數定義求出AD的長即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】求證:角平分線上的點到這個角的兩邊距離相等. 已知:
求證:
證明:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,AB=CD=15,AC平分∠BAD,AC與BD交于點O,將△ABD繞點D順時針方向旋轉,得到△EFD,旋轉角為α(0°<α<180°)點A的對應點為點E,點B的對應點為點F

(1)求證:四邊形形ABCD是菱形
(2)若∠BAD=30°,DE邊為與AB邊相交于點M,當點F恰好落在AC上時,求證:MD=ME
(3)若△ABD的周長是48,EF邊與BC邊交于點N,DF邊與BC邊交于點P,在旋轉的過程中,當△FNP是直角三角形是,△FNP的面積是多少.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠AOB=30°,點M,N分別在邊OA,OB上,OM= ,ON=3 ,點P,Q分別在邊OB,OA上運動,連接MP,PQ,QN,則MP+PQ+QN的最小值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知反比例函數y= 的圖象在二四象限,一次函數為y=kx+b(b>0),直線x=1與x軸交于點B,與直線y=kx+b交于點A,直線x=3與x軸交于點C,與直線y=kx+b交于點D.
(1)若點A,D都在第一象限,求證:b>﹣3k;
(2)在(1)的條件下,設直線y=kx+b與x軸交于點E與y軸交于點F,當 = 且△OFE的面積等于 時,求這個一次函數的解析式,并直接寫出不等式 >kx+b的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點C為△ABD的外接圓上的一動點(點C不在 上,且不與點B,D重合),∠ACB=∠ABD=45°
(1)求證:BD是該外接圓的直徑;
(2)連結CD,求證: AC=BC+CD;
(3)若△ABC關于直線AB的對稱圖形為△ABM,連接DM,試探究DM2 , AM2 , BM2三者之間滿足的等量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,D,E分別是△ABC的邊AB,AC上的中點,如果△ADE的周長是6,則△ABC的周長是(
A.6
B.12
C.18
D.24

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,雙曲線y= 經過ABCD的頂點B,D.點D的坐標為(2,1),點A在y軸上,且AD∥x軸,SABCD=5.
(1)填空:點A的坐標為;
(2)求雙曲線和AB所在直線的解析式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视