【題目】如圖,直線l1:y=-2x與直線l2:y=kx+b在同一平面直角坐標系內交于點P .
(1)直接寫出不等式-2x>kx+b 的解集 ;
(2)設直線l2 與x 軸交于點A ,△OAP的面積為12 ,求l2的表達式.
科目:初中數學 來源: 題型:
【題目】對于任意有理數a,b,定義運算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.
(1)求(﹣2)⊙3的值;
(2)對于任意有理數m,n,請你重新定義一種運算“⊕”,使得5⊕3=20,寫出你定義的運算:m⊕n= (用含m,n的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,CD、BE是邊AB和AC上的高,點M在BE的延長線上,且BM=AC,點N在CD上,且AB=CN,則∠MAN的度數是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=2x+4分別交x軸,y軸于點A,C,點D(m,2)在直線AC上,點B在x軸正半軸上,且OB=3OC.點E是y軸上任意一點記點E為(0,n).
(1)求直線BC的關系式;
(2)連結DE,將線段DE繞點D按順時針旋轉90°得線段DG,作正方形DEFG,是否存在n的值,使正方形DEFG的頂點F落在△ABC的邊上?若存在,求出所有的n值并直接寫出此時正方形DEFG與△ABC重疊部分的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年9月,莉莉進入八中初一,在準備開學用品時,她決定購買若干個某款筆記本,甲、乙兩家文具店都有足夠數量的該款筆記本,這兩家文具店該款筆記本標價都是20元/個.甲文具店的銷售方案是:購買該筆記本的數量不超過5個時,原價銷售;購買該筆記本超過5個時,從第6個開始按標價的八折出售:乙文具店的銷售方案是:不管購買多少個該款筆記本,一律按標價的九折出售.
(1)若設莉莉要購買x(x>5)個該款筆記本,請用含x的代數式分別表示莉莉到甲文具店和乙文具店購買全部該款筆記本所需的費用;
(2)在(1)的條件下,莉莉購買多少個筆記本時,到乙文具店購買全部筆記本所需的費用與到甲文具店購買全部筆記本所需的費用相同?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【概念學習】規定:求若干個相同的有理數(均不等于0)的除法運算叫除方,如,
等.類比有理數乘方,我們把
記作
,讀作“2的圈3次方”,
記作
,讀作“
的圈4次方”.一般地,把
(
≠0)記作
,讀作“a的圈c次方”.
【初步探究】
(1)直接寫出計算結果: =______________,
=______________.
(2)關于除方,下列說法錯誤的是( )
A.任何非零數的圈3次方都等于它的倒數 B.對于任何正整數c, =1
C. D.負數的圈奇數次方結果是負數,負數的圈偶數次方結果是正數
【深入思考】
我們知道有理數的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數的除方運算如何轉化為乘方運算呢?
=
=
(1)試一試:仿照上面的算式,將下列運算結果直接寫成冪的形式.
=___________;
=_____________;
=____________.
(2)想一想:將一個非零有理數a的圈c(c≥3)次方寫成冪的形式等于___________.
(3)算一算:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國某部邊防軍小分隊成一列在野外行軍,通訊員在隊伍中,數了一下他前后的人數,發現前面人數是后面的兩倍,他往前超了6位戰士,發現前面的人數和后面的人數一樣.
(1)這列隊伍一共有多少名戰士?
(2)這列隊伍要過一座320米的大橋,為安全起見,相鄰兩個戰士保持相同的一定間距,行軍速度為5米/秒,從第一位戰士剛上橋到全體通過大橋用了100秒時間,請問相鄰兩個戰士間距離為多少米(不考慮戰士身材的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點D,E分別在AC,BC上,且AD=CE,AE與BD相交于點P,BF⊥AE于點F.若PF=3,則BP=( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com