【題目】小明在學習有理數運算時發現以下三個等式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4.
(1)他把a=﹣2,b=3代入到第一個等式的左右兩邊驗證:
因為,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.
請你幫他把a=﹣2,b=3代入到后兩個等式的左右兩邊驗證是否成立;
(2)通過上述驗證,請你猜想直接寫出結果:(ab)365等于多少,歸納得出:(ab)n等于多少(n為正整數);
(3)請應用(2)中歸出的結論計算:(﹣)2017×112018
【答案】(1)見解析;(2)(ab)365=a365b365,歸納得出:(ab)n=anbn;(3)﹣1.
【解析】
(1)將a=-2,b=3代入(a×b)2=a2×b2進行計算即可;
(2)根據(1)中的各數的值找出規律即可解答;
(3)根據(2)中的規律計算出所求代數式的值即可.
(1)當a=﹣2,b=3時,
左邊=(﹣2×3)2=(﹣6)2=36,右邊=(﹣2)2×32=4×9=36,
∴左邊=右邊,
所以等式成立;
(2)根據以上驗證,知:(ab)365=a365b365,歸納得出:(ab)n=anbn,
(3)原式=(﹣)2017×112017×11
=(﹣×11)2017×11
=(﹣1)2017×1
=﹣1×1
=﹣1.
科目:初中數學 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個結論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長是9.其中正確的結論是(把你認為正確結論的序號都填上.)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,任意一個正整數n都可以進行這樣的分解:n=p×q(p,q是正整數,且p≤q),在n的所有這種分解中,如果p、q兩因數之差的絕對值最小,我們就稱p×q是n的最佳分解.并規定:F(n)=,例如12可以分解成1×12,2×6,或3×4,因為12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=
.
(1)求F(24)和F(48);
(2)如果一個正整數a是另外一個正整數b的平方,用字母表示為 ;這時我們稱正整數a是完全平方數.若m是一個完全平方數,求F(m)的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某檢修小組從地出發,在南北方向的路上檢修線路,如果規定向北行駛為正,向南行駛為負,一天行駛記錄如下:(單位:千米)
,
,
,
,
,
,
,
,
,
,
通過列式計算:
收工時檢修工人離
地多遠?在
地的哪個方向上?
若檢修人員用的是耗油為每千米
升的汽車作交通工具,那么這天中,這輛汽車共耗油多少升?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】材料一:一個正整數x能寫成x=a2﹣b2(a,b均為正整數,且a≠b),則稱x為“雪松數”,a,b為x的一個平方差分解,在x的所有平方差分解中,若a2+b2最大,則稱a,b為x的最佳平方差分解,此時F(x)=a2+b2.
例如:24=72﹣52,24為雪松數,7和5為24的一個平方差分解,32=92﹣72,32=62﹣22,因為92+72>62+22,所以9和7為32的最佳平方差分解,F(32)=92+72
材料二:若一個四位正整數,它的千位數字與個位數字相同,百位數字與十位數字相同,但四個數字不全相同,則稱這個四位數為“南麓數”.例如4334,5665均為“南麓數”.
根據材料回答:
(1)請直接寫出兩個雪松數,并分別寫出它們的一對平方差分解;
(2)試證明10不是雪松數;
(3)若一個數t既是“雪松數”又是“南麓數”,并且另一個“南麓數”的前兩位數字組成的兩位數與后兩位數字組成的兩位數恰好是t的一個平方差分解,請求出所有滿足條件的數t中F(t)的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1)所示,A,E,F,C在一條直線上,AE=CF,過E,F分別作DE⊥AC,BF⊥AC,若AB=CD.
(1)求證:EG=FG.
(2)若將△DEC的邊EC沿AC方向移動,變為圖(2)時,其余條件不變,上述結論是否成立?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2﹣2x﹣3.
(1)將y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;
(2)與y軸的交點坐標是 , 與x軸的交點坐標是;
(3)在坐標系中利用描點法畫出此拋物線.
x | … | … | |||||
y | … | … |
(4)不等式x2﹣2x﹣3>0的解集是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com