精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點E、點F分別是等邊△ABC的邊ABAC上的點,且BE=AFCE、BF 相交于點P,則∠BPC的大小為_____

【答案】120°

【解析】

欲求BPC的大小,需證得ACE≌△BCF;利用全等三角形的性質得到BCE=ABF,則由圖示知PBC+PCB=PBC+ABF=ABC=60°,即PBC+PCB=60°,所以根據三角形內角和定理求得BPC=120°.

解:∵△ABC是等邊三角形,
AC=BC,A=BCF=60°,AB=AC,
BE=AF,
AE=CF,
ACE與BCF中,

∴△ACE≌△BCF(SAS),

∴△ABFBCE,
∴∠BCE=ABF,
∴∠PBC+PCB=PBC+ABF=ABC=60°,即PBC+PCB=60°,
∴∠BPC=180°-60°=120°.

故答案為:BPC=120°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:線段AB.

(1)尺規作圖:作線段AB的垂直平分線l,與線段AB交于點D;(保留作圖痕跡,不寫作法)

(2)在(1)的基礎上,點C為l上一個動點(點C不與點D重合),連接CB,過點A作AE⊥BC,垂足為點E.

①當垂足E在線段BC上時,直接寫出∠ABC度數的取值范圍.

②若∠B=60,求證:.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】9分某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:

1有4張桌子,用第一種擺設方式,可以坐___________人;當有 張桌子時,用第二種擺設方式可以坐___________人用含有n的代數式表示

2一天中午,餐廳要接待85位顧客共同就餐,但餐廳中只有20張這樣的長方形桌子可用,且每4張拼成一張大桌子,若你是這家餐廳的經理,你打算選擇哪種方式來擺放餐桌,為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了了解某校九年級學生的跳高水平,隨機抽取該年級50名學生進行跳高測試,并把測試成績繪制成如圖所示的頻數表和未完成的頻數直方圖(每組含前一個邊界值,不含后一個邊界值).

某校九年級50名學生跳高測試成績的頻數表

組別(m)

頻數

1.09~1.19

8

1.19~1.29

12

1.29~1.39

A

1.39~1.49

10

(1)求a的值,并把頻數直方圖補充完整;

(2)該年級共有500名學生,估計該年級學生跳高成績在1.29m(含1.29m)以上的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為1的正方形ABCD中,動點F,E分別以相同的速度從D,C兩點同時出發向C和B運動(任何一個點到達即停止),過點P作PM∥CD交BC于M點,PN∥BC交CD于N點,連接MN,在運動過程中,則下列結論:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤線段MN的最小值為
其中正確的結論有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,交CA的延長線于點E,連接AD、DE.
(1)求證:D是BC的中點;
(2)若DE=3,BD﹣AD=2,求⊙O的半徑;
(3)在(2)的條件下,求弦AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】綜合題。

1)如圖,在ABC中,AC=BC,∠ACB=90°,直線l過點C,分別過A、B兩點作ADl于點D,作BEl于點E.求證:DE=AD+BE.

2)如圖,已知RtABC,∠C=90°.用尺規作圖法作出ABC的角平分線AD;(不寫作法,保留作圖痕跡)

3)若AB=10,CD=3,求ABD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的是( )

A. 長方形的長是,寬比長短25,則它的周長可表示為

B. 表示底為6,高為的三角形的面積

C. 表示一個兩位數,它的個位數字是十位數字是

D. 甲、乙兩人分別從相距40千米的兩地相向出發,其行走的速度分別為3千米/小時和5千米/小時,經過小時相遇,則可列方程為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點,其中A,B兩點的橫坐標分別為﹣1和﹣4,且拋物線過原點.

(1)求拋物線的解析式;
(2)在坐標軸上是否存在點C,使△ABC為等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)若點P是線段AB上不與A,B重合的動點,過點P作PE∥OA,與拋物線第三象限的部分交于一點E,過點E作EG⊥x軸于點G,交AB于點F,若S△BGF=3S△EFP , 求 的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视