精英家教網 > 初中數學 > 題目詳情

【題目】一副含 角的三角板 疊合在一起,邊 重合, (如圖1),點 為邊 的中點,邊 相交于點 .現將三角板 繞點 按順時針方向旋轉(如圖2),在 的變化過程中,點 相應移動的路徑長為 . (結果保留根號)

【答案】12 -18 cm
【解析】如圖2和圖3,在 ∠ C G F 從 0 ° 到 60 ° 的變化過程中,點H先向AB方向移,在往BA方向移,直到H與F重合(下面證明此時∠CGF=60度),此時BH的值最大,
如圖3,當F與H重合時,連接CF,因為BG=CG=GF,
所以∠BFC=90度,
∵∠B=30度,
∴∠BFC=60度,
由CG=GF可得∠CGF=60度.
∵BC=12cm,所以BF=BC=6
如圖2,當GH⊥DF時,GH有最小值,則BH有最小值,且GF//AB,連接DG,交AB于點K,則DG⊥AB,
∵DG=FG,
∴∠DGH=45度,
則KG=KH=GH=×(×6)=3
BK=KG=3
則BH=BK+KH=3+3
則點H運動的總路程為6-(3+3)+[12(-1)-(3+3)]=12-18(cm)
所以答案是:12-18cm.


【考點精析】利用旋轉的性質對題目進行判斷即可得到答案,需要熟知①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校初三年級(1)班要舉行一場畢業聯歡會.規定每個同學分別轉動下圖中兩個可以自由轉動的均勻轉盤A、B(轉盤A被均勻分成三等份.每份分別標上1.2,3三個數宇.轉盤B被均勻分成二等份.每份分別標上4,5兩個數字).若兩個轉盤停止后指針所指區域的數字都為偶數(如果指針恰好指在分格線上.那么重轉直到指針指向某一數字所在區域為止).則這個同學要表演唱歌節目.請求出這個同學表演唱歌節目的概率(要求用畫樹狀圖或列表方法求解)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AB為⊙O直徑,以OA為直徑作⊙M.過B作⊙M得切線BC,切點為C,交⊙O于E.
(1)在圖中過點B作⊙M作另一條切線BD,切點為點D(用尺規作圖,保留作圖痕跡,不寫作法,不用證明);
(2)證明:∠EAC=∠OCB;
(3)若AB=4,在圖2中過O作OP⊥AB交⊙O于P,交⊙M的切線BD于N,求BN的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動點,連結AC并延長交⊙O于D,過點D作圓的切線交OB的延長線于E,已知OA=8.

(1)求證:∠ECD=∠EDC;
(2)若tanA= ,求DE長;
(3)當∠A從15°增大到30°的過程中,求弦AD在圓內掃過的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側與墻MN平行且距離為0.8米,已知小汽車車門寬AO為1.2米,當車門打開角度∠AOB為40°時,車門是否會碰到墻?請說明理由。(參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.

(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,E為CD上一點,分別以EA,EB為折痕將兩個角(∠D,∠C)向內折疊,點C,D恰好落在AB邊的點F處.若AD=2,BC=3,則EF的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x經過原點O,且與直線y=x﹣2交于B,C兩點.

(1)求拋物線的頂點A的坐標及點B,C的坐標;
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點P,使△PBC的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由;
(4)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,已知矩形ABCD中,AB=60cm,BC=90cm.點P從點A出發,以3cm/s的速度沿AB運動:同時,點Q從點B出發,以20cm/s的速度沿BC運動.當點Q到達點C時,P、Q兩點同時停止運動.設點P、Q運動的時間為t(s).

(1)當t=s時,△BPQ為等腰三角形;
(2)當BD平分PQ時,求t的值;
(3)如圖②,將△BPQ沿PQ折疊,點B的對應點為E,PE、QE分別與AD交于點F、G.探索:是否存在實數t,使得AF=EF?如果存在,求出t的值:如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视