【題目】已知拋物線經過點(4,3),且當 時,
有最小值
.
(1)求這條拋物線的解析式.
(2)寫出 隨
的增大而減小的自變量
的取值范圍.
科目:初中數學 來源: 題型:
【題目】(1)如圖,求證
(2)如圖,為垂足,
平分
交
于點
.求
的度數.
(3)已知
①如圖1,求的度數;
②如圖2,和
的平分線
相交于點
,求
的度數;
③在圖2中,畫和
平分線相交于點
,求
的度數(直接寫出結果即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)化簡求值:(2+a)(2-a)+a(a-2b)+3a5b÷(-a2b)4,其中ab=-.
(2)因式分解:a(n-1)2-2a(n-1)+a.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場經營某種品牌的玩具,購進時的單價是30元,根據市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:
(2)在(1)條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.
(3)在(1)條件下,若玩具廠規定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某人在電車路軌旁與路軌平行的路上騎車行走,他留意到每隔6分鐘有一部電車從他后面駛向前面,每隔2分鐘有一部電車從對面駛向后面.假設電車和此人行駛的速度都不變(分別為u1, u2表示),請你根據下面的示意圖,求電車每隔__________分鐘(用t表示)從車站開出一部.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著人們環保意識的增強,“低碳生活”成為人們提倡的生活方式,黃先生要從某地到福州,若乘飛機需要3小時,乘汽車需要9小時.這兩種交通工具每小時排放的二氧化碳總量為70千克,已知飛機每小時二氧化碳的排放量比汽車多44千克,黃先生若乘汽車去福州,那么他此行與乘飛機相比減少二氧化碳排放量多少千克?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P與點Q不重合,以點P為圓心作經過Q的圓,則稱該圓為點P、Q的“相關圓”
(1)已知點P的坐標為(2,0) ①若點Q的坐標為(0,1),求點P、Q的“相關圓”的面積;
②若點Q的坐標為(3,n),且點P、Q的“相關圓”的半徑為 ,求n的值;
(2)已知△ABC為等邊三角形,點A和點B的坐標分別為(﹣ ,0)、(
,0),點C在y軸正半軸上,若點P、Q的“相關圓”恰好是△ABC的內切圓且點Q在直線y=2x上,求點Q的坐標.
(3)已知△ABC三個頂點的坐標為:A(﹣3,0)、B( ,0),C(0,4),點P的坐標為(0,
),點Q的坐標為(m,
),若點P、Q的“相關圓”與△ABC的三邊中至少一邊存在公共點,直接寫出m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com