【題目】已知等邊△ABC的邊長為4cm,點P,Q分別從B,C兩點同時出發,其中點P沿BC向終點C運動,速度為1cm/s;
點Q沿CA,AB向終點B運動,速度為2cm/s,設它們運動的時間為x(s),
(1)如圖(1),當x為何值時,PQ∥AB;
(2)如圖(2),若PQ⊥AC,求x;
(3)如圖(3),當點Q在AB上運動時,PQ與△ABC的高AD交于點O,OQ與OP是否總是相等?請說明理由.
【答案】
(1)解:∵∠C=60°,
∴當PC=CQ時,△PQC為等邊三角形,
于是∠QPC=60°=∠B,
從而PQ∥AB,
∵PC=4﹣x,CQ=2x,
由4﹣x=2x,
解得:x= ,
∴當x= 時,PQ∥AB
(2)解:∵PQ⊥AC,∠C=60°,
∴∠QPC=30°,
∴CQ= PC,
即2x= (4﹣x),
解得:x=
(3)解:OQ=PO,理由如下:
作QH⊥AD于H,如圖(3),
∵AD⊥BC,
∴∠QAH=30°,BD= BC=2,
∴QH= AQ=
(2x﹣4)=x﹣2,
∵DP=BP﹣BD=x﹣2,
∴QH=DP,
在△OQH和△OPD中, ,
∴△OQH≌△OPD(AAS),
∴OQ=OP.
【解析】(1)可從結論入手,若PQ∥AB,可得出△PQC為等邊三角形,PC=4﹣x=CQ=2x,進而求出x;(2)利用直角三角形中30度角的性質,得出CQ= PC,求出x;(3)通過Q點作垂線,利用x的代數式表示QH=DP,構造△OQH≌△OPD,進而OQ=OP.
科目:初中數學 來源: 題型:
【題目】若干個蘋果分給x個小孩,如果每人分3個,那么余7個;如果每人分5個,那么最后一人分到的蘋果不足5個,則x滿足的不等式組為( 。
A. 0<(3x+7)﹣5(x﹣1)≤5 B. 0<(3x+7)﹣5(x﹣1)<5
C. 0≤(3x+7)﹣5(x﹣1)<5 D. 0≤(3x+7)﹣5(x﹣1)≤5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.
(1)求證:AE=BF;
(2)連接GB,EF,求證:GB∥EF;
(3)若AE=1,EB=2,求DG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點(3,﹣2)關于y軸對稱的點的坐標是( )
A. (3,2) B. (3,﹣2) C. (﹣3,2) D. (﹣3,﹣2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,在10×10的正方形網格中,點A,B,C,D均在格點上,以點A為位似中心畫四邊形AB′C′D′,使它與四邊形ABCD位似,且相似比為2.
(1)在圖中畫出四邊形AB′C′D′;
(2)填空:△AC′D′是 三角形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com