精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24厘米,AB=8厘米,BC=30厘米,動點P從A開始沿AD邊向D以每秒1厘米的速度運動,動點Q從點C開始沿CB邊向B以每秒3厘米的速度運動,P,Q分別從點A、C同時出發,當其中一點到達端點時,另一點也隨之停止運動.設運動時間為t秒.

(1)當t在什么時間范圍時,CQ>PD?
(2)存在某一時刻t,使四邊形APQB是正方形嗎?若存在,求出t值;若不存在,請說明理由.

【答案】
(1)解:∵CQ=3t,PD=24﹣t,

∴由CQ>PD有3t>24﹣t,

解得t>6.

又∵P、Q點的運動時間只能是30÷3=10(s),

∴6<t≤10,即當6<t≤10時,CQ>PD


(2)解:若四邊形是正方形,則AP=AB且BQ=AB,

∴1×t=8且30﹣3t=8,

顯然無解,即不存在t的值使得四邊形APQB是正方形


【解析】(1)先表示出PD,CQ再根據CQ>PD列出方程即可解決問題;
(2)若四邊形是正方形,則AP=AB且BQ=AB,則1×t=8且30-3t=8,顯然無解,即不存在t的值使得四邊形APQB是正方形;

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】列方程組解應用題

為了保護環境,深圳某公交公司決定購買一批共10臺全新的混合動力公交車,現有A、B兩種型號,其中每臺的價格,年省油量如下表:

A

B

價格(萬元/臺)

a

b

節省的油量(萬升/年)

2.4

2

經調查,購買一臺A型車比購買一臺B型車多20萬元,購買2A型車比購買3B型車少60萬元.

1)請求出ab;

2)若購買這批混合動力公交車每年能節省22.4萬汽油,求購買這批混合動力公交車需要多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,把直角三角形的直角頂點放在直線上,射線平分.

1)如圖,若,求的度數.

2)若,則的度數為 .

3)由(1)和(2),我們發現之間有什么樣的數量關系?

4)若將三角形繞點旋轉到如圖所示的位置,試問之間的數量關系是否發生變化?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著幾何部分的學習,小鵬對幾何產生了濃厚的興趣,他最喜歡利用手中的工具畫圖了如圖,作一個,以O為圓心任意長為半徑畫弧分別交OAOB于點C和點D,將一副三角板如圖所示擺放,兩個直角三角板的直角頂點分別落在點C和點D,直角邊中分別有一邊與角的兩邊重合,另兩條直角邊相交于點P,連接小鵬通過觀察和推理,得出結論:OP平分

你同意小鵬的觀點嗎?如果你同意小鵬的觀點,試結合題意寫出已知和求證,并證明.

已知:中,____________,____________,____________

求證:OP平分

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數學的驕傲.如圖所示的趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設直角三角形較長直角邊長為a,較短直角邊長為b,若ab=8,大正方形的面積為25,則小正方形的邊長為(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )

A. 如圖1,展開后測得∠1=∠2

B. 如圖2,展開后測得∠1=∠2∠3=∠4

C. 如圖3,測得∠1=∠2

D. 如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖, 在平面直角坐標系xOy中,三角形ABC三個頂點的坐標分別為(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 個單位長度,再向左平移 個單位長度得到三角形 ,點A,BC的對應點分別為 ,.

(1)寫出點 ,, 的坐標

(2)在圖中畫出平移后的三角形 ;

(3)三角形 的面積為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A,B,C滿足二次函數y=ax2+bx的表達式,則對該二次函數的系數a和b判斷正確的是( )

A.a>0,b>0
B.a<0,b<0
C.a>0,b<0
D.a<0,b>0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:通過小學的學習我們知道,分數可分為真分數假分數,而假分數都可化為常分數,如: 2+ 2 .我們定義:在分式中,對于只含有一個字母的分式,當分子的次數大于或等于分母的次數時,我們稱之為假分式;當分子的次數小于分母的次數時,我們稱之為真分式.如 , 這樣的分式就是假分式;再如: , 這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).如: =1- ;

解決下列問題:

1)分式 分式(填真分式假分式);

2 將假分式化為帶分式;

3)如果 x 為整數,分式 的值為整數,求所有符合條件的 x 的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视