【題目】幾何體的三視圖相互關聯.已知直三棱柱的三視圖如圖,在△PMN中,∠MPN=90°,PN=4,sin∠PMN= .
(1)求BC及FG的長;
(2)若主視圖與左視圖兩矩形相似,求AB的長;
(3)在(2)的情況下,求直三棱柱的表面積.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內任取一點D,連結AD(AD<AB),將線段AD繞點A逆時針旋轉90°,得到線段AE,連結DE,CE,BD.
(1)請根據題意補全圖1;
(2)猜測BD和CE的數量關系并證明;
(3)作射線BD,CE交于點P,把△ADE繞點A旋轉,當∠EAC=90°,AB=2,AD=1時,補全圖形,直接寫出PB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,∠B=90°,AD=AB=4,BC=7,點E在BC上,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處.
(1)求線段DC的長度;
(2)求△FED的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O的半徑為1,等腰直角三角形ABC的頂點B的坐標為(,0),
CAB=90°, AC=AB,頂點A在⊙O上運動.
(1)設點A的橫坐標為x,△ABC的面積為S,求S與x之間的函數關系式,并求出S的最大值與最小值;(2)當直線AB與⊙O相切時,求AB所在直線對應的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市出租車計費方法如圖所示,x(km)表示行駛里程,y(元)表示車費,請根據圖象回答下面的問題:
(1)出租車的起步價是多少元?當x>3時,求y關于x的函數關系式.
(2)若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=﹣x+
的圖象與反比例函數y=
(k>0)的圖象交于A,B兩點,過A點作x軸的垂線,垂足為M,△AOM面積為1.
(1)求反比例函數的解析式;
(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,∠A=2∠BCD,點E在AB的延長線上,∠AED=∠ABC
(1)求證:DE與⊙O相切;
(2)若BF=2,DF=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com