【題目】對于一組數據:x1,x2,x3,…,x10,若去掉一個最大值和一個最小值,則下列統計量一定不會發生變化的是( 。
A.平均數B.中位數C.眾數D.方差
科目:初中數學 來源: 題型:
【題目】已知直線y=﹣x+3與坐標軸分別交于點A,B,點P在拋物線y=﹣
(x﹣
)2+4上,能使△ABP為等腰三角形的點P的個數有( )
A.3個 B.4個 C.5個 D.6個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結論中正確的是 .
(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=
OA;(4)在旋轉過程中,當△BEF與△COF的面積之和最大時,AE=
;(5)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在所給正方形網格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)畫出格點△ABC(頂點均在格點上)關于直線DE對稱的△A1B1C1;
(2)在DE上畫出點Q,使QA+QC最。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是(0,4)、(-1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形A′B′OC′.
(1)若拋物線過點C、A、A′,求此拋物線的解析式;
(2)點M是第一象限內拋物線上的一動點,問:當點M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時M的坐標;
(3)若P為拋物線上的一動點,N為x軸上的一動點,點Q坐標為(1,0),當P、N、B、Q 構成平行四邊形時,求點P的坐標,當這個平行四邊形為矩形時,求點N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點,頂點為C,點P為拋物線上,且位于x軸下方.
(1)如圖1,若P(1,-3)、B(4,0),
① 求該拋物線的解析式;
② 若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;
(2) 如圖2,已知直線PA、PB與y軸分別交于E、F兩點.當點P運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】巴黎與北京的時間差為﹣7時(正數表示同一時刻比北京時間早的時數),如果北京時間是7月2日14:00,那么巴黎時間是( )
A. 7月2日21時 B. 7月2日7時 C. 7月1日7時 D. 7月2日5時
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點P從A點出發沿A→C→B路徑向終點運動,終點為B點;點Q從B點出發沿B→C→A路徑向終點運動,終點為A點.點P和Q分別以每秒1cm和3cm的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設運動時間為t秒,則當t=_________秒時,△PEC與△QFC全等.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com