【題目】已知直線AB∥CD.
(1)如圖1,直接寫出∠ABE,∠CDE和∠BED之間的數量關系是 .
(2)如圖2,BF,DF分別平分∠ABE,∠CDE,那么∠BFD和∠BED有怎樣的數量關系?請說明理由.
(3)如圖3,點E在直線BD的右側,BF,DF仍平分∠ABE,∠CDE,請直接寫出∠BFD和∠BED的數量關系 .
【答案】(1)∠ABE+∠CDE=∠BED;(2)詳見解析;(3)2∠BFD+∠BED=360°.
【解析】試題分析:(1)點E作EF∥AB,根據平行線的性質易證得∠1=∠ABE,∠2=∠CDE,則可得∠ABE+∠CDE=∠BED;(2)∠BFD=∠BED,已知BF,DF分別平分∠ABE,∠CDE,根據角平分線的性質可得∠ABF=
∠ABE,∠CDF=
∠CDE,所以∠ABF+∠CDF=
∠ABE+
∠CDE=
(∠ABE+∠CDE),由(1)的結論可得∠BFD=∠ABF+∠CDF=
(∠ABE+∠CDE),∠BED=∠ABE+∠CDE,所以∠BFD=
∠BED;(3過點E作EG∥CD,根據平行公理可得AB∥CD∥EG,根據平行線的性質易證∠ABE+∠CDE+∠BED=360°,再由(1)的方法可得∠BFD=∠ABF+∠CDF;已知BF,DF分別平分∠ABE,∠CDE,根據角平分線的性質可得∠ABF=
∠ABE,∠CDF=
∠CDE,所以∠BFD=
(∠ABE+∠CDE),即2∠BFD+∠BED=360°.
試題解析:
(1)∠ABE+∠CDE=∠BED.
理由:如圖1,作EF∥AB,
∵直線AB∥CD,
∴EF∥CD,
∴∠ABE=∠1,∠CDE=∠2,
∴∠ABE+∠CDE=∠1+∠2=∠BED,
即∠ABE+∠CDE=∠BED.
故答案為:∠ABE+∠CDE=∠BED.
(2)∠BFD=∠BED.
理由:如圖2,∵BF,DF分別平分∠ABE,∠CDE,
∴∠ABF=∠ABE,∠CDF=
∠CDE,
∴∠ABF+∠CDF=∠ABE+
∠CDE=
(∠ABE+∠CDE),
由(1),可得∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)
∠BED=∠ABE+∠CDE,
∴∠BFD=∠BED.
(3)2∠BFD+∠BED=360°.
理由:如圖3,過點E作EG∥CD,
∵AB∥CD,EG∥CD,
∴AB∥CD∥EG,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
∴∠ABE+∠CDE+∠BED=360°,
由(1)知,∠BFD=∠ABF+∠CDF,
又∵BF,DF分別平分∠ABE,∠CDE,
∴∠ABF=∠ABE,∠CDF=
∠CDE,
∴∠BFD=(∠ABE+∠CDE),
∴2∠BFD+∠BED=360°.
故答案為:2∠BFD+∠BED=360°.
科目:初中數學 來源: 題型:
【題目】觀察下列各式
(x﹣1)(x+1)=x2﹣1,
(x﹣1)(x2+x+1)=x3﹣1,
(x﹣1)(x3+x2+x+1)=x4﹣1,
……
(1)根據以上規律,則(x﹣1)(x6+x5+x4+x3+x2+x+1)= .
(2)你能否由此歸納出一般性規律:(x﹣1)(xn+xn﹣1+…+x+1)= .
(3)根據以上規律求1+3+32+…+334+335的結果
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果把一個自然數各數位上數字從最高位到個位依次排出一串數字,與從個位到最高位依次排出的一串數字完全相同,那么我們把這樣的自然數叫做 “和諧數”.例如:自然數64746從最高位到個位排出的一串數字是:6、4、7、4、6,從個位到最高排出的一串數字也是:6、4、7、4、6,所64746是“和諧數”.再如:33,181,212,4664,…,都是“和諧數”.
(1)請你直接寫出3個四位“和諧數”,猜想任意一個四位“和諧數”能否被11整除,并說明理由;[來。
(2) 已知一個能被11整除的三位“和諧數”,設個位上的數字為x(,x為自然數),十位上的數字為y,求y與x的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數;
(2)當點P運動時,∠APB與∠ADB之間的數量關系是否隨之發生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規律.
(3)當點P運動到使∠ACB=∠ABD時,∠ABC的度數是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某市為方便相距2 km的A,B兩處居民區的交往,修筑一條筆直的公路(即圖中的線段AB),經測量,在A處的北偏東60°方向、B處北偏西45°方向的C處有一半徑為0.7 km的圓形公園,問計劃修筑的公路會不會穿過公園?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在五邊形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分別為AC、AB、BC的中點.
(1)求證:△EMO≌△OND;
(2)若AB=AC,且∠BAC=40°,當∠DAB等于多少時,四邊形ADOE是菱形,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學生由于看錯了運算符號,把一個整式A減去多項式ab-2bc+3ac誤認為加上這個多項式,結果得出的答案是2bc-3ac+2ab.
(1)求整式A;
(2)求原題的正確答案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】王霞和爸爸、媽媽到人民公園游玩,回到家后,她利用平面直角坐標系畫出了公園的景區地圖,如圖所示.可是她忘記了在圖中標出原點和x軸.y軸.只知道游樂園D的坐標為(2,﹣2),請你幫她畫出坐標系,并寫出其他各景點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線BC//OA,∠C=∠OAB=100°,E,F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.
(1)求∠BOE的度數;
(2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發生變化?若變化,找出變化規律或求出變化范圍;若不變,求出這個比值(提示:圖中∠OFC=∠BOF+∠OBC);
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出∠OEC度數;若不存在,說明理由(提示:三角形三個內角的和為180).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com