【題目】如圖,在等邊△ABC中,BD=CE,AD與BE相交于點P,則∠BPD=____ _°.
【答案】60
【解析】
試題分析:本題考查了等邊三角形的性質,全等三角形的性質和判定,三角形外角性質的應用,解此題的關鍵是求出△ABD≌△BCE.根據等邊三角形性質得出∠ABD=∠C=60°,AB=BC,證出△ABD≌△BCE,根據全等三角形的性質得出∠BAD=∠CBE,根據三角形外角性質得出∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC,即可得出答案.
解:∵△ABC是等邊三角形,
∴∠ABD=∠C=60°,AB=BC,
在△ABD和△BCE中,
AB=BC∠ABD=∠CBD=CE,
∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE,
∴∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°.
故選C.
科目:初中數學 來源: 題型:
【題目】某校九年級一班全體學生2017年中招理化生實驗操作考試的成績統計如下表,根據表中的信息判斷,下列結論中錯誤的是( )
成績(分) | 30 | 29 | 28 | 26 | 18 |
人數(人) | 32 | 4 | 2 | 1 | 1 |
A. 該班共有40名學生
B. 該班學生這次考試成績的平均數為29.4分
C. 該班學生這次考試成績的眾數為30分
D. 該班學生這次考試成績的中位數為28分
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某花圃銷售一批名貴花卉,平均每天可售出20盆,每盆盈利40元,為了增加盈利并盡快減少庫存,花圃決定采取適當的降價措施,經調查發現,如果每盆花卉每降1元,花圃平均每天可多售出2盆.若花圃平均每天要盈利1200元,每盆花卉應降價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“低碳生活”作為一種健康、環保、安全的生活方式,收到越來越多人的關注,某公司生產的健身自行車在市場上受到普遍歡迎,在國內市場和國外市場暢銷,生產的產品可以全部售出,該公司的年生產能力為10萬輛,在國內市場每臺的利潤y(萬元)與銷量x(萬臺)的關系如圖所示,在國外市場每臺的利潤y2(元)與銷量x(萬臺)的關系為y2=.
(1)求國內市場的銷售總利潤z(萬元)關于銷售量x(萬臺)的函數關系式,并指出自變量的取值范圍.
(2)求該公司每年的總利潤w(萬元)關于國內市場的銷量x(萬臺)的函數關系式,并幫助該公司確定國內、國外市場的銷量各為多少萬臺時,公司的年利潤最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com