精英家教網 > 初中數學 > 題目詳情

【題目】如圖,O為直線AB上一點,OD平分∠AOC,DOE=90°.

(1)請你數一數,圖中有 個小于平角的角;

(2)若∠AOC=50°,則∠COE的度數= ,BOE的度數=

(3)猜想:OE是否平分∠BOC?請通過計算說明你猜想的結論.

【答案】19;(265°65°;(3OE平分∠BOC

【解析】

試題(1)根據角的表示方法結合圖形的特征即可得到結果;

2)由∠AOC=50°結合角平分線的性質可求得∠AOD∠DOC的度數,再結合∠DOE=90°即可求得結果;

3)設∠AOC=2α,根據角平分線的性質可得∠AOD=∠COD=,再根據∠DOE=90°可表示出∠COE、∠BOE的度數,從而作出判斷.

1)圖中有∠AOD、∠DOC∠COE、∠BOE∠AOC、∠DOE∠COB、∠AOE∠DOB9個小于平角的角;

2∵∠AOC=50°OD平分∠AOC

∴∠AOD=∠DOC==25°

∵∠DOE=90°

∴∠COE=∠DOE∠COD=65°,∠BOE=180°∠DOE∠AOD=65°

3)結論:OE平分∠BOC.

理由:設∠AOC=2α,

∵OD平分∠AOC∠AOC=2α,

∴∠AOD="∠COD" =,

∵∠DOE=90°

∴∠COE=∠DOE∠COD=90°α.

∵∠BOE=180°∠DOE∠AOD=180°90°α=90°α,

∴∠COE=∠BOE,即OE平分∠BOC.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB為半圓直徑,D、E為圓周上兩點,且AD=DE,AE與BD交于點C,則圖中與∠BCE相等的角有(
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道,可以理解為,它表示:數軸上表示數a的點到原點的距離,這是絕對值的幾何意義。進一步地,數軸上的兩個點A,B分別用數表示,那么A,B兩點之間的距離為,反過來,式子的幾何意義是:數軸上表示數的點和表示數的點之間的距離。利用此結論,的意義就是數軸上表示數的點到表示-2和表示3的點的距離之和是5,若是整數,則符合的個數是(

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在等邊三角形ABC中,點P在△ABC內,點Q在△ABC外,且∠ABPACQ,BPCQ.

(1)求證:△ABP≌△ACQ;

(2)請判斷△APQ是什么三角形,試說明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點是反比例函數在第一象限圖像上的一個動點,連接,以 為長,為寬作矩形,且點在第四象限,隨著點的運動,點也隨之運動,但點始終在反比例函數的圖像上,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某加工廠以每噸3000元的價格購進50噸原料進行加工.若進行粗加工,每噸加工費用為600元,需 天,每噸售價4000元;若進行精加工,每噸加工費用為900元,需 天,每噸售價4500元.現將這50噸原料全部加工完.設其中粗加工x噸,獲利y元.
(1)請完成表格并求出y與x的函數關系式(不要求寫自變量的范圍); 表一

粗加工數量/噸

3

7

x

精加工數量/噸

47

表二

粗加工數量/噸

3

7

x

粗加工獲利/元

2800

精加工獲利/元

25800

y與x的函數關系式
(2)如果必須在20天內完成,如何安排生產才能獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=﹣(x﹣h)2+1(為常數),在自變量x的值滿足1≤x≤3的情況下,與其對應的函數值y的最大值為﹣5,則h的值為(
A.3﹣ 或1+
B.3﹣ 或3+
C.3+ 或1﹣
D.1﹣ 或1+

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在4×4的正方形方格網中,小正方形的頂點稱為格點,△ABC的頂點都在格點上,則圖中∠ABC的余弦值是(
A.
B.
C.
D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,給出了格點△ABC和△DEF(頂點為網格線的交點),以及過格點的直線l

(1)將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形.

(2)畫出△DEF關于直線l對稱的三角形.

(3)填空:∠C+∠E   

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视