【題目】已知 (a﹣
)<0,若b=2﹣a,則b的取值范圍是 .
【答案】2﹣ <b<2
【解析】解:∵ (a﹣
)<0, ∴
>0,a﹣
<0,
解得a>0且a< ,
∴0<a< ,
∴﹣ <﹣a<0,
∴2﹣ <2﹣a<2,
即2﹣ <b<2.
所以答案是:2﹣ <b<2.
【考點精析】根據題目的已知條件,利用二次根式有意義的條件和不等式的性質的相關知識可以得到問題的答案,需要掌握被開方數必須為非負數,如果分母中有根式,那么被開方數必須是正數,因為零不能做分母;1:不等式的兩邊同時加上(或減去)同一個數(或式子),不等號的方向不變 .2:不等式的兩邊同時乘以(或除以)同一個 正數 ,不等號的方向 不變 .3:不等式的兩邊同時乘以(或除以)同一個 負數 ,的方向 改變.
科目:初中數學 來源: 題型:
【題目】為慶祝“六一”兒童節,某市中小學統一組織文藝匯演,甲、乙兩所學校共92人(其中甲校的人數多于乙校的人數,且甲校的人數不足90人)準備統一購買服裝參加演出;下面是某服裝廠給出的演出服裝的價格表
購買服裝的套數 | 1套至45套 | 46套至90套 | 91套以上 |
每套服裝的價格 | 60元 | 50元 | 40元 |
(1)如果兩所學校分別單獨購買服裝一共應付5000元,甲、乙兩所學校各有多少學生準備參加演出?
(2)如果甲校有10名同學抽調去參加書法繪畫比賽不能參加演出,請你為兩所學校設計一種最省錢的購買服裝方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為進一步建設秀美、宜居的生態環境,某村欲購買甲、乙、丙三種樹美化村莊,已知甲、乙丙三種樹的價格之比為2:2:3,甲種樹每棵200元,現計劃用210000元資金,購買這三種樹共1000棵.
(1)求乙、丙兩種樹每棵各多少元?
(2)若購買甲種樹的棵樹是乙種樹的2倍,恰好用完計劃資金,求這三種樹各能購買多少棵?
(3)若又增加了10120元的購樹款,在購買總棵樹不變的前提下,求丙種樹最多可以購買多少棵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學組織植樹活動,按年級將七、八、九年級學生分成三個植樹隊,七年級植樹x棵,八年級種的數比七年級種的數的2倍少26棵,九年級種的樹比八年級種的樹的一半多42棵.
(1)請用含x的式子表示三個隊共種樹多少棵.
(2)若這三個隊共種樹423棵,請你求出這三隊各種了多少棵樹.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:
小紅同學在學習過程中遇到這樣一道計算題“計算4×3.142﹣4×3.14×3.28+3.282”,他覺得太麻煩,估計應該有可以簡化計算的方法,就去請教崔老師.崔老師說:你完成下面的問題后就可能知道該如何簡化計算啦!
獲取新知:
請你和小紅一起完成崔老師提供的問題:
(1)填寫下表:
x=﹣1,y=1 | x=1,y=0 | x=3,y=2 | x=1,y=1 | x=5,y=3 | |
A=2x﹣y | ﹣3 | 2 | 4 | 1 | 7 |
B=4x2﹣4xy+y2 | 9 | 4 |
|
|
|
(2)觀察表格,你發現A與B有什么關系?
解決問題:
(3)請結合上述的有關信息,計算4×3.142﹣4×3.14×3.28+3.282.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著手機的普及,微信一種聊天軟件
的興起,許多人抓住這種機會,做起了“微商”,很多農產品也改變了原來的銷售模式,實行了網上銷售,這不剛大學畢業的小明把自家的冬棗產品也放到了網上,他原計劃每天賣100斤冬棗,但由于種種原因,實際每天的銷售量與計劃量相比有出入,下表是某周的銷售情況
超額記為正,不足記為負
單位:斤
;
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計劃量的差值 |
|
|
|
|
|
|
|
(1)根據記錄的數據可知前三天共賣出 ______ 斤;
(2)根據記錄的數據可知銷售量最多的一天比銷售量最少的一天多銷售 ______ 斤;
(3)本周實際銷售總量達到了計劃數量沒有?
(4)若冬季每斤按8元出售,每斤冬棗的運費平均3元,那么小明本周一共收入多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2018年俄羅斯世界杯組委會對世界杯比賽用球進行抽查,隨機抽取了100個足球,檢測每個足球的質量是否符合標準,超過或不足部分分別用正、負數來表示,記錄如表:
與標準質量的差值(單位:克) | ﹣4 | ﹣2 | 0 | 1 | 3 | 6 |
個數 | 10 | 13 | 30 | 25 | 15 | 7 |
(1)平均每個足球的質量比標準質量多還是少?用你學過的方法合理解釋;
(2)若每個足球標準質量為420克,則抽樣檢測的足球的總質量是多少克?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】武漢市光谷實驗中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),下列說法錯誤的是( 。
A. 九(1)班的學生人數為40 B. m的值為10
C. n的值為20 D. 表示“足球”的扇形的圓心角是70°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com