精英家教網 > 初中數學 > 題目詳情

【題目】為了解九年級學生的體能情況,學校組織了一次體能測試,并隨機選取50名學生的成績進行統計,得出相關統計表和統計圖(其中部分數據不慎丟失,暫用字母m,n表示).

成績等級

優秀

良好

合格

不合格

人數

m

30

n

5

請根據圖表所提供的信息回答下列問題:

(1)統計表中的m=   ,n=   ;并補全頻數分布直方圖;

(2)若該校九年級有500名學生,請據此估計該校九年級學生體能良好以上的學生有多少人?

(3)根據以往經驗,經過一段時間訓練后,有60%的學生成績可以上升一個等級,請估計經過訓練后九年級學生體能達標率(成績在良好及以上)

【答案】(1)5、10;圖詳見解析;(2)350;(3)82%.

【解析】

(1)根據條形統計圖可以求得m的值,然后利用50減去其它各組的人數即可求得n的值,據此即可補全統計圖;

(2)總人數乘以樣本中體能良好以上的學生所占比例可得;

(3)已達標人數加上合格人數×60%即可得出答案.

(1)根據條形圖可以得到:m=5,n=50﹣5﹣30﹣5=10(人),

故答案為:5、10;

(2)估計該校九年級學生體能良好以上的學生有500×=350(人);

(3)(35+10×60%)÷50=82%,

答:估計經過訓練后九年級學生體能達標率為82%.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,等腰RtABC中,∠ABC90°,點A,B分別在坐標軸上.

(1)如圖①,若點C的橫坐標為5,求點B的坐標.

(2)如圖②,若BCx軸于M,過CCDBCy軸于D . 求證:BCCDMC.

(3)如圖③,若點A的坐標為(4,0),點By軸正半軸上的一個動點,分別以OB,AB為直角邊在第一、第二象限作等腰RtOBF(OBF90°)、等腰RtABE(ABE90°),連接EFy軸于點P,當點By軸上運動時,PB的長度是否發生改變?若不變,求出PB的值;若變化,求PB的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AB=5,AC=3,DBC上一動點,連接AD,將ACD沿AD折疊,點C落在點C'處,連接C'DAB于點E,連接BC',當BC'D是直角三角形時,DE的長為_________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算

我區在一項工程招標時,接到甲、乙兩個工程隊的投標書,從投標書中得知:每施工一天,甲工程隊要萬元,乙工程隊要萬元,工程小組根據甲、乙兩隊標書的測算,有三種方案:甲隊單獨完成這個工程,剛好如期完成;乙隊單獨完成這個工程要比規定時間多用5天;**********,剩下的工程由乙隊單獨做,也正好如期完成. 方案星號部分被損毀了. 已知,一個同學設規定的工期為天,根據題意列出方程:

1)請將方案中星號部分補充出來________________;

2)你認為哪個方案節省工程款,請說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+bx+c的對稱軸為直線x=1,拋物線與x軸交于A、B兩點(點A在點B的左側),且AB=4,又P是拋物線上位于第一象限的點,直線APy軸交于點D,與對稱軸交于點E,設點P的橫坐標為t.

(1)求點A的坐標和拋物線的表達式;

(2)當AE:EP=1:2時,求點E的坐標;

(3)記拋物線的頂點為M,與y軸的交點為C,當四邊形CDEM是等腰梯形時,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著人們生活質量的提高,凈水器已經慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為 2000 元,1700 元的A,B兩種型號的凈水器,下表是近兩周的銷售情況:

1)求A,B兩種型號的凈水器的銷售單價;

2)若電器公司準備用不多于 54000 元的金額采購這兩種型號的凈水器共 30 臺,求 A種型號的凈水器最多能采購多少臺?

3)在(2)的條件下,公司銷售完這 30 臺凈水器能否實現利潤超過12800 元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個不透明的口袋里裝有分別標有漢字”、“”、“”、“的四個小球,除漢字不同之外,小球沒有任何區別,每次摸球前先攪拌均勻.

(1)若從中任取一個球,球上的漢字剛好是的概率為__________.

(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成歷城的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有010、2030的字樣.規定:顧客在本商場同一日內,每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+(3m+1)x﹣m(m>且為實數)與x軸分別交于點A、B(點B位于點A的右側且AB≠OA),與y軸交于點C.

(1)填空:點B的坐標為   ,點C的坐標為   (用含m的代數式表示);

(2)當m=3時,在直線BC上方的拋物線上有一點M,過Mx軸的垂線交直線BC于點N,求線段MN的最大值;

(3)在第四象限內是否存在點P,使得△PCO,△POA△PAB中的任意兩三角形都相似(全等是相似的特殊情況)?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视