精英家教網 > 初中數學 > 題目詳情

【題目】已知正方形和正六邊形 邊長均為1,如圖所示,把正方形放置在正六邊形外,使邊與邊重合,按下列步驟操作:將正方形在正六邊形外繞點逆時針旋轉,使邊與邊重合,完成第一次旋轉再繞點逆時針旋轉,使邊與邊重合,完成第二次旋轉;此時點經過路徑的長為_________:若按此方式旋轉,共完成六次,在這個過程中,之間距離的最大值是____

【答案】

【解析】

(1)畫出運動軌跡,根據多邊形內角和求出∠BCD,進而得出∠BCG,再根據弧長公式即可得出答案;

(2) 連接DG,作CWDB,

解:(1)如圖,點O的運動軌跡是圖在黃線,則完成第二次旋轉經過路徑的長

∵六邊形ABCDEF 內角和=6-2×180°=720°,

∴∠BCD=720°÷6=120°,

則∠GCR=60°

∵∠BCR=90°,∠GCR=60°,

∴∠BCG=150°

=;

(2) 連接DG,作CWDB,根據勾股定理求出DWKD,相加即可求出BK.

觀察圖像可知點B,O間的距離d的最小值為0,最大值為線段BK,

∵由(1)得∠BCD=120°,BC=DC=1

∴∠DCW=60°,∠WDC=30°,

CW=,DW= ,BD=

K、GD為圓心的圓上的點,

GD=KD=,

BK= BD+ KD=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點GCE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AGAH什么關系?請說明理由;

(3)設AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數關系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了解學生的安全意識情況,在全校范圍內隨機抽取部分學生進行問卷調查,根據調查結果,把學生的安全意識分成淡薄”、“一般”、“較強”、“很強四個層次,并繪制成如下兩幅尚不完整的統計圖.

根據以上信息,解答下列問題:

(1)這次調查一共抽取了 名學生,其中安全意識為很強的學生占被調查學生總數的百分比是 ;

(2)請將條形統計圖補充完整;

(3)該校有1800名學生,現要對安全意識為淡薄”、“一般的學生強化安全教育,根據調查結果,估計全校需要強化安全教育的學生約有 名.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,矩形的一條邊長為x,周長的一半為y,定義(x,y)為這個矩形的坐標。如圖2,在平面直角坐標系中,直線x=1,y=3將第一象限劃分成4個區域,已知矩形1的坐標的對應點A落在如圖所示的雙曲線上,矩形2的坐標的對應點落在區域④中,則下面敘述中正確的是( )

A. A的橫坐標有可能大于3

B. 矩形1是正方形時,點A位于區域②

C. 當點A沿雙曲線向上移動時,矩形1的面積減小

D. 當點A位于區域①時,矩形1可能和矩形2全等

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線yx2﹣2ax+b的頂點在x軸上,Px1m,Qx2,m)(x1x2是此拋物線上的兩點.

(1)a=1.

①當mb時,求x1x2的值;

②將拋物線沿y軸平移,使得它與x軸的兩個交點間的距離為4,試描述出這一變化過程;

(2)若存在實數c,使得x1c﹣1,且x2c+7成立,則m的取值范圍是_______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】跳繩是大家喜聞樂見的一項體育運動,集體跳繩時,需要兩人同頻甩動繩子,當繩子甩到最高處時,其形狀可近似看作拋物線,下圖是小明和小亮甩繩子到最高處時的示意圖,兩人拿繩子的手之間的距離為4,離地面的高度為1,以小明的手所在位置為原點建立平面直角坐標系.

(1)當身高為15的小紅站在繩子的正下方,且距小明拿繩子手的右側1處時,繩子剛好通過小紅的頭頂,求繩子所對應的拋物線的表達式;

(2)若身高為的小麗也站在繩子的正下方.

①當小麗在距小亮拿繩子手的左側1.5處時,繩子能碰到小麗的頭嗎?請說明理由;

②設小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,的取值范圍.(參考數據: 3.16)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形的頂點與坐標原點重合,頂點分別在坐標軸的正半軸上, ,在直線,直線與折線有公共點.

1)點的坐標是 ;

2)若直線經過點,求直線的解析式;

3)對于一次函數,當的增大而減小時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,半徑為3的⊙O經過等邊△ABO的頂點A、B,點P為半徑OB上的動點,連接AP,過點PPCAP交⊙O于點C,當∠ACP=30°時,AP的長為( 。

A. 3B. 3C. D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BAD是由BEC在平面內繞點B旋轉60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视