【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值是 .
【答案】.
【解析】試題分析:根據矩形的性質就可以得出EF,AP互相平分,且EF=AP,根據垂線段最短的性質就可以得出AP⊥BC時,AP的值最小,即AM的值最小,由勾股定理求出BC,根據面積關系建立等式求出其解即可.
∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四邊形AEPF是矩形,
∴EF,AP互相平分.且EF=AP, ∴EF,AP的交點就是M點, ∵當AP的值最小時,AM的值就最小,
∴當AP⊥BC時,AP的值最小,即AM的值最。 ∵AP×BC=AB×AC, ∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10, ∵AB=6,AC=8, ∴10AP=6×8, ∴AP=
∴AM=,
科目:初中數學 來源: 題型:
【題目】“幸福是奮斗出來的”,在數軸上,若C到A的距離剛好是3,則C點叫做A的“幸福點”,若C到A、B的距離之和為6,則C叫做A、B的“幸福中心”
(1)如圖1,點A表示的數為﹣1,則A的幸福點C所表示的數應該是 ;
(2)如圖2,M、N為數軸上兩點,點M所表示的數為4,點N所表示的數為﹣2,點C就是M、N的幸福中心,則C所表示的數可以是 (填一個即可);
(3)如圖3,A、B、P為數軸上三點,點A所表示的數為﹣1,點B所表示的數為4,點P所表示的數為8,現有一只電子螞蟻從點P出發,以2個單位每秒的速度向左運動,當經過多少秒時,電子螞蟻是A和B的幸福中心?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“五一”期間,申老師一家自駕游去了離家170千米的某地,下面是他們離家的距離y(千米)與汽車行駛時間x(小時)之間的函數關系的圖像.
(1)他們出發半小時后,離家多少千米?
(2)求出AB段的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果方程x2+px+q=0的兩個根是x1、x2,那么x1+x2=-p,x1x2=q,請根據以上結論,解決下列問題:
(1)已知x1、x2是方程x2+4x-2=0的兩個實數根,求+
的值;
(2)已知方程x2+bx+c=0的兩根分別為+1、
-1,求出b、c的值;
(3)關于x的方程x2+(m-1)x+m2-3=0的兩個實數根互為倒數,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是_____(填寫符合要求的序號)
(1)兩個有理數的和為負數時,這兩個數都是負數;
(2)如果兩個數的差是正數,那么這兩個數都是正數;
(3)幾個有理數相乘,當負因數個數為奇數時,乘積一定為負;
(4)數軸上到原點的距離為3的點表示的數是3或﹣3;
(5)0乘以任何數都是0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們規定:平面內點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(﹣1,0)的距離跨度;
B( ,﹣
)的距離跨度;
C(﹣3,2)的距離跨度;
②根據①中的結果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是 .
(2)如圖2,在平面直角坐標系xOy中,圖形G2為以C(1,0)為圓心,2為半徑的圓,直線y=k(x+1)上存在到G2的距離跨度為2的點,求k的取值范圍.
(3)如圖3,在平面直角坐標系xOy中,射線OA:y= x(x≥0),圓C是以3為半徑的圓,且圓心C在x軸上運動,若射線OA上存在點到圓C的距離跨度為2,直接寫出圓心C的橫坐標xc的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F.
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點O,求證:AO=CO.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC 中,AB=AC,以AB為直徑作⊙O,與BC交于點D,過D作AC的垂線,垂足為E.證明:
(1)BD=DC;
(2)DE是⊙O切線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com