精英家教網 > 初中數學 > 題目詳情
如圖,四邊形ABCD是⊙O的內接正方形,延長AB到E,使BE=AB,連接CE.
(1)求證:直線CE是⊙O的切線;
(2)連接OE交BC于點F,若OF=2,求EF的長.
分析:(1)連接OC,由O為正方形的中心得到∠OCB為45°,再由AB=BC=BE,得到三角形BCE為等腰直角三角形,即∠BCE為45°,進而確定出∠OCE為直角,即CE垂直于OC,可得證;
(2)過O作OG垂直于AB,利用垂徑定理得到AG=BG,可得出BE與EG的比值,根據FB與OG平行,由平行得比例,根據OF的長即可求出EF的長.
解答:解:(1)連接OC,
∵O為正方形ABCD的中心,
∴∠OCB=45°,
∵AB=BC=BE,∠CBE=90°,
∴△CBE為等腰直角三角形,即∠BCE=45°,
∴∠OCE=∠OCB+∠BCE=90°,
∴CE⊥OC,
則CE為圓O的切線;

(2)過O作OG⊥AB,可得出AG=BG=
1
2
AB=
1
2
BE,
∵FB⊥AE,OG⊥AE,
∴FB∥OG,
EF
EF+OF
=
BE
BE+GB
,即
EF
EF+2
=
2
3

解得:EF=4.
點評:此題考查了切線的判定,正方形的性質,平行線的性質,垂徑定理,以及等腰三角形的判定與性質,熟練掌握切線的判定方法是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视