【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數y=ax2+bx+c的表達式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行與y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.
【答案】
(1)
解:設拋物線解析式為y=a(x﹣2)2+9,
∵拋物線與y軸交于點A(0,5),
∴4a+9=5,
∴a=﹣1,
y=﹣(x﹣2)2+9=﹣x2+4x+5
(2)
解:當y=0時,﹣x2+4x+5=0,
∴x1=﹣1,x2=5,
∴E(﹣1,0),B(5,0),
設直線AB的解析式為y=mx+n,
∵A(0,5),B(5,0),
∴m=﹣1,n=5,
∴直線AB的解析式為y=﹣x+5;
設P(x,﹣x2+4x+5),
∴D(x,﹣x+5),
∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,
∵AC=4,
∴S四邊形APCD= ×AC×PD=2(﹣x2+5x)=﹣2x2+10x,
∴當x=﹣ =
時,
∴S四邊形APCD最大=
(3)
解:如圖,
過M作MH垂直于對稱軸,垂足為H,
∵MN∥AE,MN=AE,
∴△HMN≌△AOE,
∴HM=OE=1,
∴M點的橫坐標為x=3或x=1,
當x=1時,M點縱坐標為8,
當x=3時,M點縱坐標為8,
∴M點的坐標為M1(1,8)或M2(3,8),
∵A(0,5),E(﹣1,0),
∴直線AE解析式為y=5x+5,
∵MN∥AE,
∴MN的解析式為y=5x+b,
∵點N在拋物線對稱軸x=2上,
∴N(2,10+b),
∵AE2=OA2+0E2=26
∵MN=AE
∴MN2=AE2,
∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2
∵M點的坐標為M1(1,8)或M2(3,8),
∴點M1,M2關于拋物線對稱軸x=2對稱,
∵點N在拋物線對稱軸上,
∴M1N=M2N,
∴1+(b+2)2=26,
∴b=3,或b=﹣7,
∴10+b=13或10+b=3
∴當M點的坐標為(1,8)時,N點坐標為(2,13),
當M點的坐標為(3,8)時,N點坐標為(2,3)
【解析】(1)設出拋物線解析式,用待定系數法求解即可;(2)先求出直線AB解析式,設出點P坐標(x,﹣x2+4x+5),建立函數關系式S四邊形APCD=﹣2x2+10x,根據二次函數求出極值;(3)先判斷出△HMN≌△AOE,求出M點的橫坐標,從而求出點M,N的坐標.此題是二次函數綜合題,主要考查了待定系數法求函數關系式,函數極值的確定方法,平行四邊形的性質和判定,解本題的關鍵是建立函數關系式求極值.
【考點精析】掌握二次函數的最值是解答本題的根本,需要知道如果自變量的取值范圍是全體實數,那么函數在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.
科目:初中數學 來源: 題型:
【題目】【操作發現】在計算器上輸入一個正數,不斷地按“ ”鍵求算術平方根,運算結果越來越接近1或都等于1.
【提出問題】輸入一個實數,不斷地進行“乘以常數k,再加上常數b”的運算,有什么規律?
【分析問題】我們可用框圖表示這種運算過程(如圖a).
也可用圖象描述:如圖1,在x軸上表示出x1 , 先在直線y=kx+b上確定點(x1 , y1),再在直線y=x上確定縱坐標為y1的點(x2 , y1),然后再x軸上確定對應的數x2 , …,以此類推.
【解決問題】研究輸入實數x1時,隨著運算次數n的不斷增加,運算結果x,怎樣變化.
(1)若k=2,b=﹣4,得到什么結論?可以輸入特殊的數如3,4,5進行觀察研究;
(2)若k>1,又得到什么結論?請說明理由;
(3)①若k=﹣ ,b=2,已在x軸上表示出x1(如圖2所示),請在x軸上表示x2 , x3 , x4 , 并寫出研究結論;
②若輸入實數x1時,運算結果xn互不相等,且越來越接近常數m,直接寫出k的取值范圍及m的值(用含k,b的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為( )
A.1:2
B.1:3
C.1:4
D.1:1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E為正方形ABCD中CD邊上一點,∠DAE=30°,P為AE的中點,過點P作直線分別與AD、BC相交于點M、N.若MN=AE,則∠AMN等于________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年6月15日是父親節,某商店老板統計了這四年父親節當天剃須刀銷售情況,以下是根據該商店剃須刀銷售的相關數據所繪制統計圖的一部分.
請根據圖1、圖2解答下列問題:
(1)近四年父親節當天剃須刀銷售總額一共是5.8萬元,請將圖1中的統計圖補充完整;
(2)計算該店2015年父親節當天甲品牌剃須刀的銷售額.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個菱形(如圖2).記AB的長度為a,BM的長度為b.
(1)圖形①中∠B=°,圖形②中∠E=°;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風箏一號”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號”. ①小明僅用“風箏一號”紙片拼成一個邊長為b的正十邊形,需要這種紙片張;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com