精英家教網 > 初中數學 > 題目詳情
如圖所示,在直角坐標系xOy中,A,B是x軸上兩點,以AB為直徑的圓交y軸于點C,設過A、B、C三點的拋物線關系為精英家教網y=x2-mx+n,若方程x2-mx+n=0兩根倒數和為-2.
(1)求n的值;
(2)求此拋物線的關系式.
分析:(1)由于AB是圓的直徑,根據相交弦定理的推論可得OC2=OA•OB,若設A(x1,0),B(x2,0),那么n2=-x1x2,根據根與系數的關系知x1x2=n,聯立兩式即可求得n的值.
(2)根據韋達定理可求得方程的兩根之和與兩根之積,即可表示出它們的倒數和,已知了倒數和為2,即可求得m的值,由此確定拋物線的解析式.
解答:解:(1)由題意,設A(x1,0),B(x2,0),C(0,n)
∵OA=-x1,OB=x2,又CO⊥AB,
∴CO2=AO•OB,
即n2=-x1x2
又∵x1,x2是方程x2-mx+n=0的兩根,
∴x1•x2=n,
∴n2=-n,
∴n1=-1,n2=0(舍去),
∴n=-1.

(2)∵x1,x2是方程x2-mx+n=0的兩根,
∴x1+x2=m.
又∵n=-1,
∴x1x2=-1,
1
x1
+
1
x2
=
x1+x2
x1x2
=
m
-1
=-2

∴m=2,
∴所求拋物線的關系式為y=x2-2x-1.
點評:此題主要考查相交弦定理、根與系數的關系、二次函數解析式的確定等知識,難度適中.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖所示,在直角坐標平面內,O為原點,點A的坐標為(10,0),點B在第一象限內,BO=5,精英家教網sin∠BOA=
35

求:(1)點B的坐標;(2)cos∠BAO的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標平面內,函數y=
mx
(x>0,m是常數)
的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,在直角坐標平面內,函數的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連結AD、DC、CB.

1.若△ABD的面積為4,求點B的坐標

2.求證:DC∥AB

3.四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD 為菱形時,直線AB的函數解析式;如果不能,請說明理由.

 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,在直角坐標平面內,函數的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連結AD、DC、CB.

【小題1】若△ABD的面積為4,求點B的坐標
【小題2】求證:DC∥AB
【小題3】四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD 為菱形時,直線AB的函數解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2012年江蘇省鹽城市大豐市中考數學一模試卷(解析版) 題型:解答題

如圖所示,在直角坐標平面內,函數的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數解析式;如果不能,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视