【題目】如圖,已知拋物線經過原點O,頂點為A(1,1),且與直線y=x﹣2交于B,C兩點.
⑴求拋物線的解析式及點C的坐標;
⑵求證:△ABC是直角三角形;
⑶若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.
【答案】(1)y=﹣x2+2x;C(-1,-3);(2)證明過程略;(3)(,0)或(
,0)或(﹣1,0)或(5,0).
【解析】
(1)可設頂點式,把原點坐標代入可求得拋物線解析式,聯立直線與拋物線解析式,可求得C點坐標;
(2)分別過A、C兩點作x軸的垂線,交x軸于點D、E兩點,結合A、B、C三點的坐標可求得∠ABO=∠CBO=45°,可證得結論;
(3)設出N點坐標,可表示出M點坐標,從而可表示出MN、ON的長度,當△MON和△ABC相似時,利用三角形相似的性質可得或
,可求得N點的坐標.
解:(1)∵頂點坐標為(1,1),
∴設拋物線解析式為y=a(x-1)2+1,
又拋物線過原點,
∴0=a(0-1)2+1,解得a=-1,
∴拋物線解析式為y=-(x-1)2+1,
即y=-x2+2x,
聯立拋物線和直線解析式可得 ,
解得或
,
∴B(2,0),C(-1,-3);
(2)如圖,分別過A、C兩點作x軸的垂線,交x軸于點D、E兩點,
則AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,
∴∠ABO=∠CBO=45°,即∠ABC=90°,
∴△ABC是直角三角形;
(3)假設存在滿足條件的點N,設N(x,0),則M(x,-x2+2x),
∴ON=|x|,MN=|-x2+2x|,
由(2)在Rt△ABD和Rt△CEB中,可分別求得AB= ,BC=3
,
∵MN⊥x軸于點N
∴∠ABC=∠MNO=90°,
∴當△ABC和△MNO相似時有或
,
當時,則有
,即|x||-x+2|=
|x|,
∵當x=0時M、O、N不能構成三角形,
∴x≠0,
∴|-x+2|=,即-x+2=±
,解得x=
或x=
,
此時N點坐標為(,0)或(
,0);
②當時,則有
,即|x||-x+2|=3|x|,
∴|-x+2|=3,即-x+2=±3,解得x=5或x=-1,
此時N點坐標為(-1,0)或(5,0),
綜上可知存在滿足條件的N點,其坐標為( ,0)或(
,0)或(-1,0)或(5,0).
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0)、B(3,0)兩點,與y軸交于點C,頂點為D,下列結論正確的是( 。
A. abc<0
B. 3a+c=0
C. 4a﹣2b+c<0
D. 方程ax2+bx+c=﹣2(a≠0)有兩個不相等的實數根
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB⊥BD,CD⊥BD點P是BD上一點.
(1)若∠APC=90°.求證:△PAB∽△CPD;
(2)若△PAB與△PCD相似,AB=9,BP=6,CD=4.求PD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數關系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC邊于點D,過點C作CF∥AB,與過點B的切線交于點F,連接BD.
(1)求證:BD=BF;
(2)若AB=10,CD=4,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABO的頂點A是反比例函數y=與一次函數y=﹣x﹣(k+1)的圖象在第二象限的交點,AB⊥x軸于B,且S△ABO=
.
(1)直接寫出這兩個函數的關系式;
(2)求△AOC的面積;
(3)根據圖象直接寫出:當x為何值時,反比例函數的值小于一次函數的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com