【題目】如圖在△ABC中,BO,CO分別平分∠ABC,∠ACB,交于O,CE為外角∠ACD的平分線,BO的延長線交CE于點E,記∠BAC=∠1,∠BEC=∠2,則以下結論①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正確的是( 。
A. ①②③ B. ①③④ C. ①④ D. ①②④
【答案】C
【解析】
根據三角形內角和定理以及三角形角平分線的定義可得∠BOC=90°+∠1,再結合三角形外角性質可得∠ECD=∠OBC+∠2,從而可得∠BOC=90°+∠2,據此即可進行判斷.
∵BO,CO分別平分∠ABC,∠ACB,
∴∠OBC=∠ABC,∠OCB=
∠ACB,
∵∠ABC+∠ACB+∠1=180°,
∴∠ABC+∠ACB=180°-∠1,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=
(180°-∠1)=90°-
∠1,
∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-∠1)=90°+
∠1,
∵∠ACD=∠ABC+∠1,CE平分∠ACD,
∴∠ECD=∠ACD=
(∠ABC+∠1),
∵∠ECD=∠OBC+∠2,
∴∠2=∠1,即∠1=2∠2,
∴∠BOC=90°+∠1=90°+∠2,
∴①④正確,②③錯誤,
故選C.
科目:初中數學 來源: 題型:
【題目】將長方形紙片ABCD如圖折疊,B、C 兩點恰好重合落在AD 邊上的同一點P 處,折痕分別是MH、NG,已知∠MPN=90°,且PM=3,MN=5.則△PGN面積為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場準備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.
(1)求A、B型號衣服進價各是多少元?
(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級開展征文活動,征文主題只能從“愛國”“敬業”“誠信”“友善”四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數,隨機抽取了部分征文進行了調查,根據調查結果繪制成如下兩幅不完整的統計圖.
(1)求共抽取了多少名學生的征文;
(2)將上面的條形統計圖補充完整;
(3)在扇形統計圖中,選擇“愛國”主題所對應的圓心角是多少;
(4)如果該校九年級共有1200名學生,請估計選擇以“友善”為主題的九年級學生有多少名.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.
(1)用含x的代數式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設=y,求y關于x的函數關系式,并寫出它的定義域;
(3)當∠ABE的正切值是時,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列幾個命題中正確的個數為 個.
①“擲一枚均勻骰子,朝上點數為負”為必然事件(骰子上各面點數依次為1,2,3,4,5,6).
②5名同學的語文成績為90,92,92,98,103,則他們平均分為95,眾數為92.
③射擊運動員甲、乙分別射擊10次,算得甲擊中環數的方差為4,乙擊中環數的方差為16,則這一過程中乙較甲更穩定.
④某部門15名員工個人年創利潤統計表如下,其中有一欄被污漬弄臟看不清楚數據,所以對于“該部門員工個人年創利潤的中位數為5萬元”的說法無法判斷對錯.
個人年創利潤/萬元 | 10 | 8 | 5 | 3 |
員工人數 | 1 | 3 | 4 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明、小華在一棟電梯樓前感慨樓房真高.小明說:“這樓起碼20層!”小華卻不以為然:“20層?我看沒有,數數就知道了!”小明說:“有本事,你不用數也能明白!”小華想了想說:“沒問題!讓我們來量一量吧!”小明、小華在樓體兩側各選A、B兩點,測量數據如圖,其中矩形CDEF表示樓體,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四點在同一直線上)問:
(1)樓高多少米?
(2)若每層樓按3米計算,你支持小明還是小華的觀點呢?請說明理由.(參考數據:≈1.73,
≈1.41,
≈2.24)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一筆直的沿湖道路上有A、B兩個游船碼頭,觀光島嶼C在碼頭A北偏東60°的方向,在碼頭B北偏東15°的方向,AB=4km.
(1)求觀光島嶼C與碼頭A之間的距離(即AC的長);
(2)游客小明準備從觀光島嶼C乘船沿湖回到碼頭A或沿CB回到碼頭B,若開往碼頭A、B的游船速度相同,設開往碼頭A、B所用的時間分別是t1、t2,求的值.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知OD=OC,添加下列四個條件中的一個,仍不能得到△ODA與△OCB全等的是( )
A.∠D=∠CB.OA=OBC.BD=ACD.AD=BC
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com