精英家教網 > 初中數學 > 題目詳情

【題目】如圖,⊙O是以原點為圓心, 為半徑的圓,點P是直線y=﹣x+6上的一點,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為( )

A.3
B.4
C.6﹣
D.3 ﹣1

【答案】B
【解析】解:∵P在直線y=﹣x+6上,
∴設P坐標為(m,6﹣m),
連接OQ,OP,由PQ為圓O的切線,得到PQ⊥OQ,
在Rt△OPQ中,根據勾股定理得:OP2=PQ2+OQ2 ,
∴PQ2=m2+(6﹣m)2﹣2=2m2﹣12m+34=2(m﹣3)2+16,
則當m=3時,切線長PQ的最小值為4.
故選:B.

【考點精析】解答此題的關鍵在于理解一次函數的性質的相關知識,掌握一般地,一次函數y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算:﹣32+6cos45°﹣ (2﹣ )+| ﹣3|.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在直線L上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是、、,則=( )

A. 5 B. 4 C. 6 D. 、10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在直角三角形,兩條直角邊分別為6cm,8cm,斜邊長為10cm,若分別以一邊旋轉一周(結果用π表示;你可能用到其中的一個公式,V圓柱=πr2h,V球體=V圓錐=h

1)如果繞著它的斜邊所在的直線旋轉一周形成的幾何體是?

2)如果繞著它的直角邊6所在的直線旋轉一周形成的幾何體的體積是多少?

3)如果繞著它的斜邊10所在的直線旋轉一周形成的幾何體的體積與繞著直角邊8所在的直線旋轉一周形成的幾何體的體積哪個大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的方程有兩個正整數根是正整數的三邊a、b、c滿足,

求:的值;

的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點OBD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖正方形ABCD的邊長為6,E、F分別在AB,ADCE=3,且∠ECF=45°,CF長為(

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】幸福是奮斗出來的,在數軸上,若CA的距離剛好是3,則C點叫做A幸福點,若CA、B的距離之和為6,則C叫做A、B幸福中心

(1)如圖1,點A表示的數為﹣1,則A的幸福點C所表示的數應該是   ;

(2)如圖2,M、N為數軸上兩點,點M所表示的數為4,點N所表示的數為﹣2,點C就是M、N的幸福中心,則C所表示的數可以是   (填一個即可);

(3)如圖3,A、B、P為數軸上三點,點A所表示的數為﹣1,點B所表示的數為4,點P所表示的數為8,現有一只電子螞蟻從點P出發,以2個單位每秒的速度向左運動,當經過多少秒時,電子螞蟻是AB的幸福中心?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠AOB=∠COD=90°,∠BOC=34°.

(1)判斷BOC與AOD之間的數量關系,并說明理由;

(2)若OE平分AOC,求EOC的余角的度數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视