【題目】如圖,在平面直角坐標系內,已知直線y=x+4與x軸、y軸分別相交于點A和點C,拋物線y=x2+kx+k﹣1圖象過點A和點C,拋物線與x軸的另一交點是B,
(1)求出此拋物線的解析式、對稱軸以及B點坐標;
(2)若在y軸負半軸上存在點D,能使得以A、C、D為頂點的三角形與△ABC相似,請求出點D的坐標.
【答案】
(1)
解:由x=0得y=0+4=4,則點C的坐標為(0,4);
由y=0得x+4=0,解得x=﹣4,則點A的坐標為(﹣4,0);
把點C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,
解得:k=5,
∴此拋物線的解析式為y=x2+5x+4,
∴此拋物線的對稱軸為x=﹣ =﹣
.
令y=0得x2+5x+4=0,
解得:x1=﹣1,x2=﹣4,
∴點B的坐標為(﹣1,0)
(2)
解:∵A(﹣4,0),C(0,4),
∴OA=OC=4,
∴∠OCA=∠OAC.
∵∠AOC=90°,OB=1,OC=OA=4,
∴AC= =4
,AB=OA﹣OB=4﹣1=3.
∵點D在y軸負半軸上,∴∠ADC<∠AOC,即∠ADC<90°.
又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.
∴由條件“以A、C、D為頂點的三角形與△ABC相似”可得△CAD∽△ABC,
∴ =
,即
=
,
解得:CD= ,
∴OD=CD﹣CO= ﹣4=
,
∴點D的坐標為(0,﹣ ).
【解析】(1)先求出A、C兩點的坐標,再代入拋物線的解析式,就可求出該拋物線的解析式,然后根據拋物線的對稱軸方程x=﹣ 求出拋物線的對稱軸,根據拋物線上點的坐標特征求出點B的坐標;(2)易得∠OAC=∠OCA,∠ABC>∠ADC,由此根據條件即可得到△CAD∽△ABC,然后運用相似三角形的性質可求出CD的長,由此可得到OD的長,就可解決問題.
【考點精析】利用二次函數的圖象和二次函數的性質對題目進行判斷即可得到答案,需要熟知二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數學 來源: 題型:
【題目】在△ABC中,AD⊥BC于點D,點E為AC邊的中點,過點A作AF∥BC,交DE的延長線于點F,連接CF.
(1)如圖1,求證:四邊形ADCF是矩形;
(2)如圖2,當AB=AC時,取AB的中點G,連接DG、EG,在不添加任何輔助線和字母的條件下,請直接寫出圖中所有的平行四邊形(不包括矩形ADCF).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某中學九年級學生中考體育成績情況,現從中抽取部分學生的體育成績進行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)統計,統計結果如圖所示.
根據上面提供的信息,回答下列問題:
(1)本次抽查了多少名學生的體育成績;
(2)補全圖9.1,求圖9.2中D分數段所占的百分比;
(3)已知該校九年級共有900名學生,請估計該校九年級學生體育成績達到40分以上(含40分)的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖的⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,過點D、A分別作⊙O的切線交于點G,并與AB延長線交于點E.
(1)求證:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半徑為3,求AG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在等腰Rt△ABC中,∠C=90°,斜邊AB=2,若將△ABC翻折,折痕EF分別交邊AC、邊BC于點E和點F(點E不與A點重合,點F不與B點重合),且點C落在AB邊上,記作點D.過點D作DK⊥AB,交射線AC于點K,設AD=x,y=cot∠CFE,
(1)求證:△DEK∽△DFB;
(2)求y關于x的函數解析式并寫出定義域;
(3)聯結CD,當 =
時,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2000米的A點處作業,測得俯角為30°正前方的海底C點處有黑匣子信號發出.該深潛器受外力作用可繼續在同一深度直線航行3000米后,再次在B點處測得俯角為45°正前方的海底C點處有黑匣子信號發出,請通過計算判斷“蛟龍”號能否在保證安全的情況下打撈海底黑匣子.(參考數據 ≈1.732)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com