【題目】在△ABC紙片中,∠ACB=90°,AC=6,BC=8,沿過其中一個頂點的直線把△ABC剪開,若剪得的兩個三角形中僅有一個是等腰三角形,那么這個等腰三角形的面積不可能是( )
A.14.4
B.19.2
C.18.75
D.17
【答案】D
【解析】解:在Rt△ABC中,∠ACB=90°,AC=6,BC=8, ∴AB= =10,S△ABC=
ACBC=24.
沿過其中一個頂點的直線把△ABC剪開,若剪得的兩個三角形中僅有一個是等腰三角形,有四種情況:①當AC=AP=6時,如圖1所示,
S等腰△ACP= S△ABC=
×24=14.4;②當BC=BP=8時,如圖2所示,
S等腰△BCP= S△ABC=
×24=19.2;③當PA=PB時,如圖3所示,
AC2+CP2=PA2 , 即62+(8﹣PB)2=PB2 ,
解得:PB= ,
∴S等腰△PAB= PBAC=
×
×6=
=18.75;④當CA=CP=6時,如圖4所示,
S等腰△CAP= CACP=
×6×6=18.
綜上所述:等腰三角形的面積可能為14.4、19.2、18.75或18.
故選D.
【考點精析】本題主要考查了等腰三角形的性質和勾股定理的概念的相關知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一條長為2014個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A﹣B﹣C﹣D﹣A…的規律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是( )
A.(﹣1,0)
B.(1,﹣2)
C.(1,1)
D.(﹣1,﹣1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小、質地完全相同,小李從布袋里隨機取出一個小球,記下數字為x,小張在剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點Q的坐標(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;
(2)求點Q(x,y)在函數y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從點A看一山坡上的電線桿PQ,觀測點P的仰角是45°,向前走6m到達B點,測得頂端點P和桿底端點Q的仰角分別是60°和30°,求該電線桿PQ的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設△ABC的一邊長為x,這條邊上的高為y,y與x滿足的反比例函數關系如圖所示.當△ABC為等腰直角三角形時,x+y的值為( )
A.4
B.5
C.5或3
D.4或3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與直線y=x+1相交于A(﹣1,0),B(4,m)兩點,且拋物線經過點C(5,0).
(1)求拋物線的解析式;
(2)點P是拋物線上的一個動點(不與點A、點B重合),過點P作直線PD⊥x軸于點D,交直線AB于點E.
①當PE=2ED時,求P點坐標;
②是否存在點P使△BEC為等腰三角形?若存在請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次世界魔方大賽吸引世界各地共600名魔方愛好者參加,本次大賽首輪進行3×3階魔方賽,組委會隨機將愛好者平均分到20個區域,每個區域30名同時進行比賽,完成時間小于8秒的愛好者進入下一輪角逐;如圖是3×3階魔方賽A區域30名愛好者完成時間統計圖,求: ①A區域3×3階魔方愛好者進入下一輪角逐的人數的比例(結果用最簡分數表示).
②若3×3階魔方賽各個區域的情況大體一致,則根據A區域的統計結果估計在3×3階魔方賽后進入下一輪角逐的人數.
③若3×3階魔方賽A區域愛好者完成時間的平均值為8.8秒,求該項目賽該區域完成時間為8秒的愛好者的概率(結果用最簡分數表示).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com