【題目】如圖,是等腰直角三角形,
,
,把
繞點
按順時針方向旋轉
后得到
,若
,則線段
在上述旋轉過程中所掃過部分(陰影部分)的面積是_____(結果保留
).
【答案】
【解析】
根據等腰直角三角形的性質得到AC=BC=,再根據旋轉的性質得到AC′=AC=
,AB′=AB=2,∠BAB′=45°,∠B′AC′=45°,而S陰影部分=S扇形ABB′+S△AB′C′-S△ABC-S扇形ACC′=S扇形ABB′-S扇形ACC′,根據扇形的面積公式計算即可.
∵∠ACB=90°,CB=AC,AB=2,
∴AC=BC=,
∵△ABC繞點A按順時針方向旋轉45°后得到△AB′C′,
∴AC′=AC=,AB′=AB=2,∠BAB′=45°,∠B′AC′=45°,
∴S陰影部分=S扇形ABB′+S△AB′C′-S△ABC-S扇形ACC′=S扇形ABB′-S扇形ACC′
=
=
故答案為
科目:初中數學 來源: 題型:
【題目】已知在中,
,
,點
為射線
上一點(與點
不重合),過點
作
于點
,且
(點
與點
在射線
同側),連接
,
.
(1)如圖1,當點在線段
上時,請直接寫出
的度數.
(2)當點在線段
的延長線上時,依題意在圖2中補全圖形并判斷(1)中結論是否成立?若成立,請證明;若不成立,請說明理由.
(3)在(1)的條件下,與
相交于點
,若
,直接寫出
的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,過點C作⊙O的切線,交BA的延長線交于點D,過點B作BE⊥BA,交DC延長線于點E,連接OE,交⊙O于點F,交BC于點H,連接AC。
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB=,求AC的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學課上,老師提出如下問題:
尺規作圖:過直線外一點作已知直線的平行線.
已知:直線l及其外一點A.
求作:l的平行線,使它經過點A.
小云的作法如下:
(1)在直線l上任取一點B;
(2)以B為圓心,BA長為半徑作弧,交直線l于點C;
(3)分別以A、C為圓心,BA長為半徑作弧,兩弧相交于點D;
(4)作直線AD.直線AD即為所求.
小云作圖的依據是_______________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=2x﹣3與y軸交于點A,點A與點B關于x軸對稱,過點B作y軸的垂線l,直線l與直線y=2x﹣3交于點C.
(1)求點C的坐標;
(2)如果拋物線y=nx2﹣4nx+5n(n>0)與線段BC有唯一公共點,求n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(探究)
(1)觀察下列算式,并完成填空:
1=12
1+3=4=22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+…+(2n-1)=______.(n是正整數)
(2)如圖是某市一廣場用正六邊形、正方形和正三角形地板磚鋪設的圖案,圖案中央是一塊正六邊形地板磚,周圍是正方形和正三角形的地板磚.從里向外第一層包括6塊正方形和6塊正三角形地板磚;第二層包括6塊正方形和18塊正三角形地板磚;以此遞推.
①第3層中分別含有______塊正方形和______塊正三角形地板磚;
②第n層中含有______塊正三角形地板磚(用含n的代數式表示).
(應用)
該市打算在一個新建廣場中央,采用如圖樣式的圖案鋪設地面,現有1塊正六邊形、150塊正方形和420塊正三角形地板磚,問:鋪設這樣的圖案,最多能鋪多少層?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG
(1)判斷CG與⊙O的位置關系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國古代有二十四節氣歌,“春雨驚春清谷天,夏滿芒夏暑相連.秋處露秋寒霜降,冬雪雪冬小大寒.”它是為便于記憶我國古時歷法中二十四節氣而編成的小詩歌,流傳至今.節氣指二十四時節和氣候,是中國古代訂立的一種用來指導農事的補充歷法,是中國古代勞動人民長期經驗的積累和智慧的結晶.其中第一個字“春”是指立春,為春季的開始,但在氣象學上的入春日是有嚴格定義的,即連續5天的日平均氣溫穩定超過又低于
,才算是進入春天,其中,5天中的第一天即為入春日.例如:2014年3月13日至18日,北京的日平均氣溫分別為
,
,
,
,
和
,即從3月14日開始,北京日平均氣溫已連續5天穩定超過
,達到了氣象學意義上的入春標準.因此可以說2014年3月14日為北京的入春日.日平均溫度是指一天24小時的平均溫度.氣象學上通常用一天中的2時、8時、14時、20時4個時刻的氣溫的平均值作為這一天的日平均氣溫(即4個氣溫相加除以4),結果保留一位小數.如表是北京順義2017年3月28日至4月3日的氣溫記錄及日平均氣溫(單位:
)
時間 | 2時 | 8時 | 14時 | 20時 | 平均氣溫 |
3月28日 | 6 | 8 | 13 | 11 | 9.5 |
3月29日 | 7 | 6 | 17 | 14 | a |
3月30日 | 7 | 9 | 15 | 12 | 10.8 |
3月31日 | 8 | 10 | 19 | 13 | 12.5 |
4月1日 | 8 | 7 | 18 | 15 | 12 |
4月2日 | 11 | 7 | 22 | 16 | 14 |
4月3日 | 13 | 11 | 21 | 17 | 15.5 |
根據以上材料解答下列問題:
(1)求出3月29日的日平均氣溫;
(2)采用適當的統計圖將這7天的日平均氣溫的變化情況表示出來;
(3)請指出2017年的哪一天是北京順義在氣象學意義上的入春日.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】評價組對某區九年級教師的試卷講評課的學生參與度進行評價調查,其評價項目為主動質疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名同學的參與情況,繪制成如圖所示的扇形統計圖和條形統計圖(均不完整),請根據圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了 名同學;
(2)請將條形統計圖補充完整;
(3)如果全區有6000名九年級學生,那么在試卷評講課中,“獨立思考”的約有多少人?
(4)根據統計反映的情況,請你對該區的九年級同學提出一條對待試卷講評課的建議.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com