精英家教網 > 初中數學 > 題目詳情

平面直角坐標系XOY中,一次函數的圖像是直線軸、軸分別相交于A、B兩點。直線過點且與直線垂直,其中>0。點P、Q同時從A點出發,其中點P沿射線AB運動,速度為每秒4個單位;點Q沿射線AO運動,速度為每秒5個單位。

⑴寫出A點的坐標和AB的長;

⑵當點P、Q運動了多少秒時,以點Q為圓心,PQ為半徑的⊙Q與直線軸都相切,求此時的值。

 


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y=
m
x
(m≠0)的圖象相交于A、B兩點,且點B的縱坐標為-
1
2
,過點A作AC⊥x軸于點C,AC=1,OC=2.
求:(1)求反比例函數的解析式;
(2)求一次函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

在平面直角坐標系xOy中,△AOB的位置如圖所示,已知∠AOB=精英家教網90°,∠A=60°,點A的坐標為(-
3
,1).
求:(1)點B的坐標;
(2)圖象經過A、O、B三點的二次函數的解析式和這個函數圖象的頂點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖(1),將Rt△AOB放置在平面直角坐標系xOy中,∠A=90°,∠AOB=60°,OB=2
3
,斜邊OB在x軸的正半軸上,點A在第一象限,∠AOB的平分線OC交AB于C.動點P從點B出發沿折線BC-CO以每秒1個單位長度的速度向終點O運動,運動時間為t秒,同時動點Q從點C出發沿折線CO-Oy以相同的速度運動,當點P到達點O時P、Q同時停止運動.
(1)OC、BC的長;
(2)設△CPQ的面積為S,求S與t的函數關系式;
(3)當P在OC上、Q在y軸上運動時,如圖(2),設PQ與OA交于點M,當t為何值時,△OPM為等腰三角形?求出所有滿足條件的t值.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知平面直角坐標系xOy中,點A(2,m),B(-3,n)為兩動點,其中m>1,連接O精英家教網A,OB,OA⊥OB,作BC⊥x軸于C點,AD⊥x軸于D點.
(1)求證:mn=6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:2?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•河東區一模)如圖,在平面直角坐標系xOy中,矩形AOCD的頂點A的坐標是(0,4),現有兩動點P、Q,點P從點O出發沿線段OC(不包括端點O,C)以每秒2個單位長度的速度,勻速向點C運動,點Q從點C出發沿線段CD(不包括端點C,D)以每秒1個單位長度的速度勻速向點D運動.點P、Q同時出發,同時停止,設運動時間為t秒,當t=2秒時PQ=2
5

(Ⅰ)求點D的坐標,并直接寫出t的取值范圍;
(Ⅱ)連接AQ并延長交x軸于點E,把AE沿AD翻折交CD延長線于點F,連接EF,則△AEF的面積S是否隨t的變化而變化?若變化,求出S與t的函數關系式;若不變化,求出S的值.
(Ⅲ)在(Ⅱ)的條件下,t為何值時,PQ∥AF?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视