【題目】計算。
(1) +(π﹣3.14)0+(﹣2)2
(2)(m﹣2n)2+(m+n)(m﹣n)
【答案】
(1)解:原式=4+1+4
=9;
(2)解:原式=m2+2n2﹣4mn+m2﹣n2
=2m2+n2﹣4mn
【解析】(1)分別根據負整數指數冪的計算法則、0指數冪的計算法則及數的乘方法則分別計算出各數,再根據實數混合運算的法則進行計算即可;(2)先根據完全平方公式及平方差公式分別計算出各數,合并同類項即可.
【考點精析】解答此題的關鍵在于理解零指數冪法則的相關知識,掌握零次冪和負整數指數冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數),以及對整數指數冪的運算性質的理解,了解aman=am+n(m、n是正整數);(am)n=amn(m、n是正整數);(ab)n=anbn(n是正整數);am/an=am-n(a不等于0,m、n為正整數);(a/b)n=an/bn(n為正整數).
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O直徑,且弦CD⊥AB于點E,過點B作⊙O的切線與AD的延長線交于點F.
(1)若EN⊥BC于點N,延長NE與AD相交于點M.求證:AM=MD;
(2)若⊙O的半徑為10,且cosC =,求切線BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在某校“我的中國夢”演講比賽中,有9名學生參加決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的
A.眾數 B.方差 C.平均數 D.中位數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點E(x0,y0),F(x2,y2),點M(x1,y1)是線段EF的中點,則,
.在平面直角坐標系中有三個點A(1,-1),B(-1,-1),C(0,1),點P(0,2)關于A的對稱點為P1(即P,A,P1三點共線,且PA=P1A),P1關于B的對稱點為P2,P2關于C的對稱點為P3,按此規律繼續以A,B,C為對稱點重復前面的操作,依次得到P4,P5,P6,…,則點P2015的坐標是( )
A. (0,0) B. (0,2)
C. (2,-4) D. (-4,2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B兩地相距240千米,一輛公交車從A地出發,以每小時48千米的速度駛向B地;一輛小轎從B地出發,以每小時72千米的速度沿同條道路駛向A地。若小轎車從B地出發1小時后,公交車從A地出發,兩車相向而行,求公交車出發后幾小時兩車相遇?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=6,AC=8,則BC邊上中線AD的取值范圍為( ) (提示:可以構造平行四邊形)
A.2<AD<14
B.1<AD<7
C.6<AD<8
D.12<AD<16
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com