【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,點D是△ABC內一點,DB=DC,∠DCB=30°,點E是BD延長線上一點,AE=AB.
(1)求證:△ABD≌△ACD.
(2)求∠ADE的度數.
(3)試猜想線段DE,AD,DC之間的數量關系,并證明你的結論.
科目:初中數學 來源: 題型:
【題目】如圖,已知網格上最小的正方形的邊長為1.
(1)分別寫出A,B,C三點的坐標;
(2)作△ABC關于y軸的對稱圖形△A′B′C′(不寫作法),想一想:關于y軸對稱的兩個點之間有什么關系?
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點O順時針旋轉75°至OA’B’C’的位置.若OB=,∠C=120°,則點B’的坐標為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以原點O為圓心的圓過點A(5,0),直線y=kx-2k+3(k≠0)與⊙O交于B、C兩點,則弦BC的長的最小值為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、B分別在x軸、y軸上,AB=12,∠OAB=30°,經過A、B的直線l以每秒1個單位的速度向下作勻速平移運動,與此同時,點P從點B出發,在直線l上以每秒1個單位的速度沿直線l向右下方向作勻速運動.設它們運動的時間為t秒.
(1)直接寫出A、B點坐標是A點 ,B點 ;
(2)用含t的代數式求出表示點P的坐標;
(3)過O作OC⊥l于C,過C作CD⊥x軸于D,問:t為何值時,以P為圓心、1為半徑的圓與直線OC相切?并寫出此時⊙P與直線CD的位置關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,
,
的平分線
和
的外角平分線
相交于點
,分別交
和
的延長線于
,
.過
作
交
的延長線于點
,交
的延長線于點
,連接
交
于點
.下列結論:①
;②
垂直平分
;③
;④
;其中正確的結論有( )
A.4個B.3個C.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AC=AB,CD平分∠ACB,DE⊥BC于點E,若BC=15 cm,則△DEB的周長為( )
A.14 cmB.15 cm
C.16 cmD.17 cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果店銷售某種水果,原來每箱售價元,每星期可賣
箱.為了促銷,該水果店決定降價銷售.市場調查反映:每降價
元,每星期可多賣
箱.已知該水果每箱的進價是
元,設該水果每箱售價
元,每星期的銷售量為
箱.
求
與
之間的函數關系式;
當每箱售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?
若該水果店銷售這種水果每星期想要獲得不低于
元的利潤,每星期至少要銷售該水果多少箱?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數,a≠0)的頂點P在直線l上,則稱該拋物線L與直線l具有“一帶一路關系”,此時,拋物線L叫做直線l的“帶線”,直線l叫做拋物線L的“路線”.
⑴求“帶線”L:y=x2﹣2mx+m2+m﹣1(m是常數)的“路線”l的解析式;
⑵若某“帶線”L:y=x2+bx+c的頂點在二次函數y=x2+4x+1的圖象上,它的“路線”l的解析式為y=2x+4.
①求此“帶線”L的解析式;
②設“帶線”L與“路線”l的另一②個交點為Q,點R在PQ之間的“帶線”L上,當點R到“路線”l的距離最大時,求點R的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com