【題目】如圖,AB∥CD,BE平分∠ABD,DE平分∠BDC,且BE與DE相交于點E,求證∠E=90° 證明:∵AB∥CD()
∴∠ABD+∠BDC=180°()
∵BE平分∠ABD()
∴∠EBD= ()
又∵DE平分∠BDC
∴∠BDE= ()
∴∠EBD+∠EDB= ∠ABD+
∠BDC()
= (∠ABD+∠BDC)=90°
∴∠E=90°.
【答案】已知;兩直線平行,同旁內角互補;已知;∠ABD;角平分線的定義;∠CDB;角平分線的定義;等式的性質
【解析】證明:∵AB∥CD(已知) ∴∠ABD+∠BDC=180°(兩直線平行,同旁內角互補)
∵BE平分∠ABD(已知)
∴∠EBD= ∠ABD(角平分線的定義)
又∵DE平分∠BDC
∴∠BDE= ∠CDB(角平分線的定義)
∴∠EBD+∠EDB= ∠ABD+
∠BDC(等式的性質)
= (∠ABD+∠BDC)=90°
∴∠E=90°.
所以答案是:已知,兩直線平行,同旁內角互補,已知,∠ABD,角平分線的定義,∠CDB,角平分線的定義,等式的性質
【考點精析】利用平行線的性質對題目進行判斷即可得到答案,需要熟知兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補.
科目:初中數學 來源: 題型:
【題目】紅紅和娜娜按如圖所示的規則玩一次“錘子、剪刀、布”游戲,下列命題中錯誤的是( )
A.紅紅不是勝就是輸,所以紅紅勝的概率為
B.紅紅勝或娜娜勝的概率相等
C.兩人出相同手勢的概率為
D.娜娜勝的概率和兩人出相同手勢的概率一樣
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據圖形填空:
(1)若直線ED,BC被直線AB所截,則∠1和__________是同位角.
(2)若直線ED,BC被直線AF所截,則∠3和__________是內錯角.
(3)∠1和∠3是直線AB,AF被直線__________所截構成的__________角.
(4)∠2和∠4是直線__________,__________被直線BC所截構成的__________角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,圖象中所反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示時間,y 表示張強離家的距離。根據圖象提供的信息,以下四個說法錯誤的是( )
A. 體育場離張強家2.5千米 B. 張強在體育場鍛煉了15分鐘
C. 體育場離早餐店4千米 D. 張強從早餐店回家的平均速度是3千米/小時
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將Rt△ABC繞點A逆時針旋轉30°后得到Rt△ADE,點B經過的路徑為 ,則圖中陰影部分的面積是( )
A.
B.
C. ﹣
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,BD、CE分別是邊AC、AB上的高,點M是BC的中點,且MN⊥DE,垂足為點N
⑴求證:ME=MD;
⑵若BC=20cm,ED=12cm,求MN的長
⑶如果BD平分∠ABC,求證:AC=4EN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB∥CD,現將一直角三角形PMN放入圖中,其中∠P=90°,PM交AB于點E,PN交CD于點F.
(1)當△PMN所放位置如圖①所示時,求出∠PFD與∠AEM的數量關系;
(2)當△PMN所放位置如圖②所示時,求證:∠PFD-∠AEM=90°;
(3)在(2)的條件下,若MN與CD交于點O,且∠DON=15°,∠PEB=30°,求∠N的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)閱讀以下內容:
已知實數x,y滿足x+y=2,且求k的值.
三位同學分別提出了以下三種不同的解題思路:
甲同學:先解關于x,y的方程組,再求k的值.
乙同學:先將方程組中的兩個方程相加,再求k的值.
丙同學:先解方程組,再求k的值.
(2)你最欣賞(1)中的哪種思路?先根據你所選的思路解答此題,再對你選擇的思路進行簡要評價.
(評價參考建議:基于觀察到題目的什么特征設計的相應思路,如何操作才能實現這些思路、運算的簡潔性,以及你依此可以總結什么解題策略等等)
請先在以下相應方框內打勾,再解答相應題目.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com