已知橢圓C:+
=1(a>b>0),直線y=x+
與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,F1,F2為其左、右焦點,P為橢圓C上任一點,△F1PF2的重心為G,內心為I,且IG∥F1F2.
(1)求橢圓C的方程.
(2)若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點A,B且線段AB的垂直平分線過定點C(,0)求實數k的取值范圍.
科目:高中數學 來源: 題型:
(08年泉州一中適應性練習文)(12分)已知橢圓C:+
=1(a>b>0)的離心率為
,過右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點。
(1)求直線ON(O為坐標原點)的斜率KON ;
(2)對于橢圓C上任意一點M ,試證:總存在角(
∈R)使等式:
=cos
+sin
成立。
查看答案和解析>>
科目:高中數學 來源: 題型:
(09年湖北重點中學4月月考理)(13分
已知橢圓C:+
=1(a>b>0)的離心率為
,過右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的
(1)求直線ON(O為坐標原點)的斜率KON ;
1) (2)對于橢圓C上任意一點M ,試證:總存在角(
∈R)使等式:
=cos
+sin
成立
查看答案和解析>>
科目:高中數學 來源: 題型:
已知橢圓C:+
=1(a>b>0)的離心率為
,過右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點。
(1)求直線ON(O為坐標原點)的斜率KON ;
(2)對于橢圓C上任意一點M ,試證:總存在角(
∈R)使等式:
=cos
+sin
成立。w.w.w.k.s.5.u.c.o.m
查看答案和解析>>
科目:高中數學 來源: 題型:
已知橢圓C:+
=1(a>b>0)的離心率為
,過右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點。
(1)求直線ON(O為坐標原點)的斜率KON ;
(2)對于橢圓C上任意一點M ,試證:總存在角(
∈R)使等式:
=cos
+sin
成立。
查看答案和解析>>
科目:高中數學 來源:2014屆湖北省武漢市高三9月調研測試理科數學試卷(解析版) 題型:解答題
已知橢圓C:+
=1(a>b>0)的離心率為
,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有=
+
成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com