精英家教網 > 高中數學 > 題目詳情
已知 f(x)為R上的可導函數,且f(x)<f'(x)和f(x)>0對于x∈R恒成立,則有( 。
A、f(2)<e2-f(0),f(2010)>e2010-f(0)B、f(2)>e2-f(0),f(2010)>e2010-f(0)C、f(2)<e2-f(0),f(2010)<e2010-f(0)D、f(2)<e2-f(0),f(2010)<e2010-f(0)
分析:先構造函數y=
f(x)
ex
,對該函數進行求導,化簡變形可判定導函數的符號,再判斷增減性,從而得到答案.
解答:解:∵f(x)<f'(x) 從而 f'(x)-f(x)>0 從而
ex[f′(x)-f(x)]
e2x
>0
從而 (
f(x)
ex
)
>0 從而函數y=
f(x)
ex
單調遞增,故 x=2時函數的值大于x=0時函數的值,
f(2)
e2
>f(0)
所以f(2)>e2f(0),f(2010)>e2010f(0).
故選B.
點評:本題主要考查函數的單調性與其導函數的正負情況之間的關系,即導函數大于0時原函數單調遞增,當導函數小于0時原函數單調遞減.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)為R上的減函數,則滿足f(|
1
x
|)<f(1)的實數x的取值范圍是(  )
A、(-1,1)
B、(0,1)
C、(-1,0)∪(0,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上的奇函數,當x>0時,f(x)=3x,那么f(log
 
4
1
2
)的值為
-9
-9

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上的減函數,則滿足f(
1x2
)>f(1)
的實數x的取值范圍是
(-∞,-1)∪(1,+∞)
(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上不恒為零的函數,且對于任意的a,b∈R都滿足:f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判斷f(x)的奇偶性,并證明你的結論;
(3)若f(2)=2,g(n)=f(2n)(n∈N),求g(n).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视