【題目】已知正四棱柱的底面邊長為2,側棱長為4,過點
作平面
與正四棱柱的三條側棱
,
,
分別交于
,
,
,且
,若多面體
和多面體
的體積比為3∶5,則截面
的周長為_________.
科目:高中數學 來源: 題型:
【題目】如圖,某校打算在長為1千米的主干道一側的一片區域內臨時搭建一個強基計劃高校咨詢和宣傳臺,該區域由直角三角形區域
(
為直角)和以
為直徑的半圓形區域組成,點
(異于
,
)為半圓弧上一點,點
在線段
上,且滿足
.已知
,設
,且
.初步設想把咨詢臺安排在線段
,
上,把宣傳海報懸掛在弧
和線段
上.
(1)若為了讓學生獲得更多的咨詢機會,讓更多的省內高校參展,打算讓最大,求該最大值;
(2)若為了讓學生了解更多的省外高校,貼出更多高校的海報,打算讓弧和線段
的長度之和最大,求此時的
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,a1=1,an>0,Sn2=an+12﹣λSn+1,其中λ為常數.
(1)證明:Sn+1=2Sn+λ;
(2)是否存在實數λ,使得數列{an}為等比數列,若存在,求出λ;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知離心率為的橢圓
的左頂點為
,左焦點為
,及點
,且
、
、
成等比數列.
(1)求橢圓的方程;
(2)斜率不為的動直線
過點
且與橢圓
相交于
、
兩點,記
,線段
上的點
滿足
,試求
(
為坐標原點)面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,圓
,如圖,
分別交
軸正半軸于點
.射線
分別交
于點
,動點
滿足直線
與
軸垂直,直線
與
軸垂直.
(1)求動點的軌跡
的方程;
(2)過點作直線
交曲線
與點
,射線
與點
,且交曲線
于點
.問:
的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的多面體中,平面平面
,四邊形
為邊長為2的菱形,
為直角梯形,四邊形
為平行四邊形,且
,
,
.
(1)若,
分別為
,
的中點,求證:
平面
;
(2)若,
與平面
所成角的正弦值為
,求二面角
的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com