精英家教網 > 高中數學 > 題目詳情
(2013•嘉定區一模)已知函數f(x)=sin
x
2
cos
x
2
+
3
cos2
x
2

(1)求方程f(x)=0的解集;
(2)如果△ABC的三邊a,b,c滿足b2=ac,且邊b所對的角為x,求角x的取值范圍及此時函數f(x)的值域.
分析:(1)利用兩種方法解:法1:令f(x)=0得到一個方程,將方程左邊提取cos
x
2
化為積的形式,利用兩數相乘積為0,兩因式中至少有一個為0轉化為兩個方程,利用余弦函數的圖象與性質及正切函數的圖象與性質分別求出x的范圍,即可得到方程的解集;法2:將函數f(x)解析式第一項利用二倍角的正弦函數公式化簡,第二項利用二倍角的余弦函數公式化簡,整理后再利用兩角和與差的正弦函數公式及特殊角的三角函數值化為一個角的正弦函數,令f(x)=0,整理后利用正弦函數的圖象與性質求出x的范圍,即為方程的解集.
(2)利用余弦定理表示出cosB,將已知的等式b2=ac代入,利用基本不等式變形得到cosB的范圍,由B為三角形的內角,利用余弦函數的圖象與性質得出此時B的范圍,即為x的范圍,將函數f(x)解析式第一項利用二倍角的正弦函數公式化簡,第二項利用二倍角的余弦函數公式化簡,整理后再利用兩角和與差的正弦函數公式及特殊角的三角函數值化為一個角的正弦函數,由B的范圍求出這個角的范圍,利用正弦函數的定義域與值域即可求出f(x)的值域.
解答:解:(1)法1:由f(x)=0,
得sin
x
2
cos
x
2
+
3
cos2
x
2
=cos
x
2
(sin
x
2
+
3
cos
x
2
)=0,
由cos
x
2
=0,得
x
2
=kπ+
π
2
,
∴x=2kπ+π(k∈Z);
由sin
x
2
+
3
cos
x
2
=0,得tan
x
2
=-
3
,
x
2
=kπ-
π
3
,即x=2kπ-
3
(k∈Z),
則方程f(x)=0的解集為{x|2kπ+π或2kπ-
3
(k∈Z)};
法2:f(x)=
1
2
sinx+
3
2
(cosx+1)
=
1
2
sinx+
3
2
cosx+
3
2
=sin(x+
π
3
)+
3
2

由f(x)=0,得sin(x+
π
3
)=-
3
2
,
可得x+
π
3
=kπ-(-1)k
π
3
(k∈Z),即x=kπ-(-1)k
π
3
-
π
3
(k∈Z),
則方程f(x)=0的解集為{x|x=kπ-(-1)k
π
3
-
π
3
(k∈Z)};
(2)∵b2=ac,且a2+c2≥2ac(當且僅當a=c時取等號),
∴由余弦定理得cosB=
a2+c2-b2
2ac
=
a2+c2-ac
2ac
1
2
,
又B為三角形的內角,
∴0<B≤
π
3
,
由題意得x=B,即x∈(0,
π
3
],
f(x)=
1
2
sinx+
3
2
(cosx+1)
=
1
2
sinx+
3
2
cosx+
3
2
=sin(x+
π
3
)+
3
2
,
∵x+
π
3
∈(
π
3
,
3
],
則此時函數f(x)的值域為[
3
3
2
+1].
點評:此題考查了余弦定理,二倍角的正弦、余弦函數公式,兩角和與差的正弦函數公式,正弦函數的定義域與值域,余弦、正切函數的圖象與性質,以及基本不等式的運用,熟練掌握公式及定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•嘉定區一模)書架上有3本不同的數學書,2本不同的語文書,2本不同的英語書,將它們任意地排成一排,則左邊3本都是數學書的概率為
1
35
1
35
(結果用分數表示).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區一模)若雙曲線x2-
y2
k
=1
的焦點到漸近線的距離為2
2
,則實數k的值是
8
8

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區一模)如圖所示的算法框圖,若輸出S的值是90,那么在判斷框(1)處應填寫的條件是
k≤8
k≤8

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區一模)如圖,在平面直角坐標系xOy中,橢圓
x2
a2
+
y2
b2
=1(a>b>0)被圍于由4條直線x=±a,y=±b所圍成的矩形ABCD內,任取橢圓上一點P,若
OP
=m•
OA
+n•
OB
(m、n∈R),則m、n滿足的一個等式是
m2+n2=
1
2
m2+n2=
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區一模)設等差數列{an}的前n項和為Sn,且a5+a13=34,S3=9.數列{bn}的前n項和為Tn,滿足Tn=1-bn
(1)求數列{an}的通項公式;
(2)寫出一個正整數m,使得
1
am+9
是數列{bn}的項;
(3)設數列{cn}的通項公式為cn=
an
an+t
,問:是否存在正整數t和k(k≥3),使得c1,c2,ck成等差數列?若存在,請求出所有符合條件的有序整數對(t,k);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视