【題目】下列有關命題的說法正確的是__________________.
①命題“若x2-3x+2=0,則x=1”的逆否命題為:若x≠1,則x2-3x+2≠0
②x=1是x2-3x+2=0的充分不必要條件
③若p∧q為假命題,則p,q均為假命題
④對于命題p:x∈R,使得x2+x+1<0,則非p:x∈R, 均有x2+x+1≥0
科目:高中數學 來源: 題型:
【題目】如圖,在多面體ABCED中,BE⊥CD,平面ABED⊥平面BCE.在梯形ABED中,AB∥DE,BE⊥AB.DE=BE=CE=2AB,M是BC的中點,點N在線段DE上,且滿足DN=DE.
(1)求證:MN∥平面ACD;
(2)若AB=2,求點N到平面ABC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(-1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在邊長為3的菱形中,已知
,且
.將梯形
沿直線
折起,使
平面
,如圖2,
分別是
上的點.
(1)求證:圖2中,平面平面
;
(2)若平面平面
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,馬路南邊有一小池塘,池塘岸
長40米,池塘的最遠端
到
的距離為400米,且池塘的邊界為拋物線型,現要在池塘的周邊建一個等腰梯形的環池塘小路
,且
均與小池塘岸線相切,記
.
(1)求小路的總長,用表示;
(2)若在小路與小池塘之間(圖中陰影區域)鋪上草坪,求所需鋪草坪面積最小時,的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.
(1)將紅色卡片和藍色卡片分別放在兩個袋中,然后從兩個袋中各取一張卡片,求兩張卡片數字之積為偶數的概率
(2)將五張卡片放在一個袋子中,從中任取兩張,求兩張卡片顏色不同的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定數列,若滿足
(
且
),對于任意
,都有
,則稱數列
為指數數列.
(1)已知數列、
的通項公式分別為
,
,試判斷
、
是不是指數數列(需說明理由);
(2)若數列滿足:
,
,
,證明:
是指數數列;
(3)若是指數數列,
,證明:數列
中任意三項都不能構成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠用甲、乙兩種不同工藝生產一大批同一種零件,零件尺寸均在[21.7,22.3](單位:cm)之間的零件,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)
[22.2,22.3]的記為三等品,現從甲、乙工藝生產的零件中各隨機抽取100件產品,所得零件尺寸的頻率分布直方圖如圖所示:
(Ⅰ)根據上述數據完成下列2×2列聯表,根據此數據你認為選擇不同的工藝與一等品產出率是否有關?
甲工藝 | 乙工藝 | 總計 | |
一等品 | |||
非一等品 | |||
總計 |
P(K2≥k) | 0.1 | 0.05 | 0.01 |
k | 2.706 | 3.841 | 6.635 |
附:,其中
.
(Ⅱ)以上述兩種工藝中各種產品的頻率作為相應產品產出的概率,若一等品、二等品、三等品的單件利潤分別為30元、20元、15元,從一件產品的平均利潤考慮,你認為以后該工廠應該選擇哪種工藝生產該種零件?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com