【題目】在如圖所示的多面體中, 平面
,
.
(1)在上求作點
,使
平面
,請寫出作法并說明理由;
(2)求三棱錐的高.
【答案】(1)詳見解析(2).
【解析】試題分析:(1)由題意,因此只需
,就可推出
平面
,而
延長線與
交點恰為
的中點
因此作法為先取
的中點
,再連結
,交
于
.證法為先由線線平行證得線面平行,再由線面平行證得面面平行,最后由面面平行證得線面平行.(2)求三棱錐的高,可由等體積法求得:因為
,而
平面
,所以
,這樣只需求出兩個三角形面積,代入化簡即得三棱錐的高.
試題分析:解:(1)取的中點
,連結
,交
于
,連結
.此時
為所求作的點.
下面給出證明:
∵,∴
,又
,∴四邊形
是平行四邊形,
故即
.
又平面
平面
,∴
平面
;
∵平面
,
平面
,∴
平面
.
又∵平面
平面
,
∴平面平面
,
又∵平面
,∴
平面
.
(2)在等腰梯形中,∵
,
∴可求得梯形的高為,從而
的面積為
.
∵平面
,∴
是三棱錐
的高.
設三棱錐的高為
.
由,可得
,
即,解得
,
故三棱錐的高為
.
科目:高中數學 來源: 題型:
【題目】在如圖所示的正方體ABCD-A1B1C1D1中,E,F,E1,F1分別是棱AB,AD,B1C1,C1D1的中點,
求證:(1) ;
(2)∠EA1F=∠E1CF1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某校高三上學期期末數學考試成績中,隨機抽取了名學生的成績得到如圖所示的頻率分布直方圖:
(1)根據頻率分布直方圖,估計該校高三學生本次數學考試的平均分;
(2)若用分層抽樣的方法從分數在和
的學生中共抽取
人,該
人中成績在
的有幾人?
(3)在(2)中抽取的人中,隨機抽取
人,求分數在
和
各
人的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學高二年級開設五門大學先修課程,其中屬于數學學科的有兩門,分別是線性代數和微積分,其余三門分別為大學物理,商務英語以及文學寫作,年級要求每名學生只能選修其中一科,該校高二年級600名學生各科選課人數統計如下表:
其中選修數學學科的人數所占頻率為0.6,為了了解學生成績與選課情況之間的關系,用分層抽樣的方法從這600名學生中抽取10人進行分析.
(1)求和
的取值以及抽取的10人中選修商務英語的學生人數;
(2)選出的10名學生中恰好包含甲乙兩名同學,其中甲同學選修的是線性代數,乙同學選修的是大學物理,現從線性代數和大學物理兩個學科中隨機抽取3人,求這3人中正好有甲乙兩名同學的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長均相等的正四棱錐中,
為底面正方形的重心,
分別為側棱
的中點,有下列結論:
①平面
;②平面
平面
;③
;
④直線與直線
所成角的大小為
.
其中正確結論的序號是__________.(寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線C的極坐標方程為ρ﹣4cosθ+3ρsin2θ=0,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l過點M(1,0),傾斜角為.
(Ⅰ)求曲線C的直角坐標方程與直線l的參數方程;
(Ⅱ)若曲線C經過伸縮變換后得到曲線C′,且直線l與曲線C′交于A,B兩點,求|MA|+|MB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知平面平面
,四邊形
是正方形,四邊形
是菱形,且
,
,點
、
分別為邊
、
的中點,點
是線段
上的動點.
(1)求證:;
(2)求三棱錐的體積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com