精英家教網 > 高中數學 > 題目詳情

已知函數,其中為實數.
(Ⅰ) 若處取得的極值為,求的值;
(Ⅱ)若在區間上為減函數,且,求的取值范圍.

(1)無極值;(2),或

解析試題分析:(1)由題意假設此時所以無極值
(2)設,則有,
,令解得
為增函數,當為減函數
時,取得極大值,當時,取得極小值,且函數有兩個公共點所以,或
考點:利用導數研究函數的極值,利用導數研究函數的單調性。
點評:中檔題,利用導數研究函數的極值,一般遵循“求導數、求駐點、研究導數的正負、確定極值”,利用“表解法”,清晰易懂。研究曲線有公共點的問題,往往利用導數研究函數圖象的大致形態加以解答。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若,求函數的極小值;
(Ⅱ)設函數,試問:在定義域內是否存在三個不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知實數a滿足1<a≤2,設函數f (x)=x3x2+a x.
(Ⅰ) 當a=2時,求f (x)的極小值;
(Ⅱ) 若函數g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的極小值點與f (x)的極小值點相同,
求證:g(x)的極大值小于或等于10.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處取得極值.
(1)求實數的值;
(2)若關于的方程在區間上恰有兩個不同的實數根,求實數的取值范圍;
(3)證明:對任意的正整數,不等式都成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,,其中的導函數.
(1)對滿足的一切的值,都有,求實數的取值范圍;
(2)設,當實數在什么范圍內變化時,函數的圖象與直線只有一個公共點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數和“偽二次函數” .
(Ⅰ)證明:只要,無論取何值,函數在定義域內不可能總為增函數;
(Ⅱ)在同一函數圖像上任意取不同兩點A(),B(),線段AB中點為C(),記直線AB的斜率為k.
(1)對于二次函數,求證
(2)對于“偽二次函數” ,是否有(1)同樣的性質?證明你的結論。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線與直線x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函數y=f(x)在區間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅲ)若a>2,求證:函數y=f(x)在(0,2)上恰有一個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 
(Ⅰ)若a>0,函數y=f(x)在區間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅱ)若a>2,求證:函數y=f(x)在(0,2)上恰有一個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
若函數處取得極值,試求的值;
在(1)的條件下,當時,恒成立,求c的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视