精英家教網 > 高中數學 > 題目詳情

如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,連接BC、AC。

(1)求AB和OC的長;
(2)點E從點A出發,沿x軸向點B運動(點E與點A、B不重合)。過點E作直線l平行BC,交AC于點D。設AE的長為m,△ADE的面積為s,求s關于m的函數關系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點E為圓心,與BC相切的圓的面積(結果保留)。

(1),,(2)(3)

解析試題分析:解:(1)令y=0,即,
整理得
解得:,
∴ A(—3,0),B(6,0)
令x = 0,得y = —9,
∴ 點C(0,—9)
,,      3分
(2),
∵ l∥BC,
∴ △ADE∽△ACB,
,即
,其中。          6分
(3)

∴ 當時,S△CDE取得最大值,且最大值是。
這時點E(,0),
,,
作EF⊥BC,垂足為F,
∵∠EBF=∠CBO,∠EFB=∠COB,
∴△EFB∽△COB,
,即

∴ ⊙E的面積為:。
答:以點E為圓心,與BC相切的圓的面積為。     11分
考點:二次函數的性質、相似三角形的性質
點評:該題主要考查了二次函數的性質、相似三角形的性質、圖形面積的求法等綜合知識.在解題時,要多留意圖形之間的關系,有些時候將所求問題進行時候轉化可以大大的降低解題的難度.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

直線與橢圓交于,兩點,已知
,若且橢圓的離心率,又橢圓經過點,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點為半焦距),求直線的斜率的值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(Ⅰ)判斷曲線的切線能否與曲線相切?并說明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,設拋物線方程為,為直線上任意一點,過引拋物線的切線,切點分別為

(1)求證:三點的橫坐標成等差數列;
(2)已知當點的坐標為時,.求此時拋物線的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為拋物線的焦點,點為拋物線內一定點,點為拋物線上一動點,最小值為8.
(1)求該拋物線的方程;
(2)若直線與拋物線交于、兩點,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓左、右焦點分別為F1、F2,點,點F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設直線與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角互補,求證:直線過定點,并求該定點的坐標。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)
如圖,已知橢圓=1(ab>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓C:(a>b>0)的右焦點為F(1,0),離心率為,P為左頂點。
(1)求橢圓C的方程;
(2)設過點F的直線交橢圓C于A,B兩點,若△PAB的面積為,求直線AB的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓M的中心為坐標原點,且焦點在x軸上,若M的一個頂點恰好是拋物線的焦點,M的離心率,過M的右焦點F作不與坐標軸垂直的直線,交M于A,B兩點。
(1)求橢圓M的標準方程;
(2)設點N(t,0)是一個動點,且,求實數t的取值范圍。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视