如圖所示,正方形與直角梯形
所在平面互相垂直,
,
,
.
(1)求證:平面
;
(2)求四面體的體積.
(1)證明:見解析;(2)四面體的體積
.
解析試題分析:(1)設正方形ABCD的中心為O,取BE中點G,連接FG,OG,由中位線定理,我們易得四邊形AFGO是平行四邊形,即FG∥OA,由直線與平面平行的判定定理即可得到AC∥平面BEF;
(2)由已知中正方形ABCD與直角梯形ADEF所在平面互相垂直,∠ADE=90°,我們可以得到AB⊥平面ADEF,結合DE=DA=2AF=2.分別計算棱錐的底面面積和高,代入棱錐體積公式即可求出四面體BDEF的體積.(1)的關鍵是證明出FG∥OA,(2)的關鍵是得到AB⊥平面ADEF,即四面體BDEF的高為AB.
試題解析:(1)證明:設,取
中點
,
連結,所以,
因為,
,所以
,
從而四邊形是平行四邊形,
. 2分
因為平面
,
平面
, 4分
所以平面
,即
平面
. 6分
(2)解:因為平面平面
,
,
所以平面
. 8分
因為,
,
,
所以的面積為
, 10分
所以四面體的體積
. 12分
考點:1.直線與平面平行的判定;2.棱錐的體積
科目:高中數學 來源: 題型:解答題
在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1。
(1)設平面ABE與平面ACD的交線為直線,求證:
∥平面BCDE;
(2)設F是BC的中點,求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。
(1)證明:平面PAB⊥平面PBC;
(2)若,
,PB與底面ABC成60°角,
分別是
與
的中點,
是線段
上任意一動點(可與端點重合),求多面體
的體積。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,是以
為直徑的半圓上異于點
的點,矩形
所在的平面垂直于該半圓所在平面,且
(Ⅰ)求證:;
(Ⅱ)設平面與半圓弧的另一個交點為
,
①求證://
;
②若,求三棱錐E-ADF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖(1),在等腰直角三角形中,
,點
分別為線段
的中點,將
和
分別沿
折起,使二面角
和二面角
都成直二面角,如圖(2)所示。
(1)求證:面
;
(2)求平面與平面
所成的銳二面角的余弦值;
(3)求點到平面
的距離。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com