精英家教網 > 高中數學 > 題目詳情
已知等比數列的前20和為30,前30項和為70,則前10和為
10
10
分析:根據等比數列{an}的Sm,S2m-Sm,S3m-S2m也成等比數列,再結題意可求出S10的值并要驗證.
解答:解:設等比數列前10項和為S10,公比是q,
∵等比數列前20項的和為30,前30項的和為70,
∴S20-S10=30-S10,S30-S20=40,
∵數列{an}是等比數列,
∴S10,S20-S10,S30-S10也成等比數列,
(30-S10)2=S10×40,解得S10=10或90,
當S10=90時,S10=90,S20-S10=-60,S30-S10=40,
q10=
S20-S10
S10
=-
2
3
<0,故舍去,
則S10=10符合題意,
故答案為:10.
點評:本題考查了等比數列的性質,熟練掌握等比數列{an}的Sm,S2m-Sm,S3m-S2m也成等比數列,是解答的關鍵,注意求出的值需要驗證.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知等比數列的首項為8,是其前n項的和,某同學經計算得S2=20,S3=36,S4=65,后來該同學發現了其中一個數算錯了,則該數為

       A. S1                      B. S2              C. S3                    D. S4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列的首項為8,是其前n項的和,某同學經計算得S2=20,S3=36,S4=65,后來該同學發現了其中一個數算錯了,則該數為

       A. S1                      B. S2              C. S3                    D. S4

查看答案和解析>>

科目:高中數學 來源:2012--2013學年河南省高二上學期第一次考試數學試卷(解析版) 題型:選擇題

已知等比數列的首項為8,是其前n項的和,某同學經計算得S2=20,S3=36,S4=65,后來該同學發現了其中一個數算錯了,則該數為                           (    )

A.S2                 B.S3             C. S4            D.無法確定

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列的首項為8,Sn是其前n項的和,某同學計算得到S2=20,S3=36,S4=65,后來該同學發現了其中一個數算錯了,則該數為

    A.S1           B.S2              C. S3             D.S4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视