【題目】太極是中國古代的哲學術語,意為派生萬物的本源.太極圖是以黑白兩個魚形紋組成的圓形圖案,俗稱陰陽魚.太極圖形象化地表達了陰陽輪轉,相反相成是萬物生成變化根源的哲理.太極圖形展現了一種互相轉化,相對統一的形式美.按照太極圖的構圖方法,在平面直角坐標系中,圓被
的圖象分割為兩個對稱的魚形圖案,圖中的兩個一黑一白的小圓通常稱為“魚眼”,已知小圓的半徑均為
,現在大圓內隨機投放一點,則此點投放到“魚眼”部分的概率為( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】意大利人斐波那契在1202年寫的《計算之書》中提出一個兔子繁殖問題:假設一對剛出生的小兔一個月后能長成大兔,再過一個月便能生下一對小兔,此后每個月生一對小兔,如此,設第n個月的兔子對數為,則
,
,
,
,
,….考查數列
的規律,不難發現,
(
),我們稱該數列為斐波那契數列.
(1)若數列的前n項和為
,滿足
,
(
,
),試判斷數列
是否構成斐波那契數列,說明理由;
(2)若數列是斐波那契數列,且
,求證:數列
是等比數列;
(3)若數列是斐波那契數列,求數列
的前n項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,有三根針和套在一根針上的個金屬片,按下列規則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.
將個金屬片從1號針移到3號針最少需要移動的次數記為
,則
__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了解高二年級學生某次數學考試成績的分布情況,從該年級的1120名學生中隨機抽取了100名學生的數學成績,發現都在內現將這100名學生的成績按照
,
,
,
,
,
,
分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是
A. 頻率分布直方圖中a的值為
B. 樣本數據低于130分的頻率為
C. 總體的中位數保留1位小數
估計為
分
D. 總體分布在的頻數一定與總體分布在
的頻數相等
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關法規宣傳普及的關系,對某試點社區抽取戶居民進行調查,得到如下的
列聯表.
分類意識強 | 分類意識弱 | 合計 | |
試點后 | |||
試點前 | |||
合計 |
已知在抽取的戶居民中隨機抽取
戶,抽到分類意識強的概率為
.
(1)請將上面的列聯表補充完整;
(2)判斷是否有的把握認為居民分類意識的強弱與政府宣傳普及工作有關?說明你的理由;
參考公式:,其中
.
下面的臨界值表僅供參考
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】氣象意義上,從春季進入夏季的標志為:“連續5天的日平均溫度不低于22℃”.現有甲、乙、丙三地連續5天的日平均溫度的記錄數據(記錄數據都是正整數):
①甲地:5個數據的中位數為24,眾數為22;
②乙地:5個數據的中位數為27,總體均值為24;
③丙地:5個數據的中有一個數據是32,總體均值為26,總體方差為10.8;
則肯定進入夏季的地區的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業為確定下一年度投入某種產品的生產所需的資金,需了解每投入2千萬資金后,工人人數(單位:百人)對年產能
(單位:千萬元)的影響,對投入的人力和年產能的數據作了初步處理,得到散點圖和統計量表.
(1)根據散點圖判斷:與
哪一個適宜作為年產能
關于投入的人力
的回歸方程類型?并說明理由?
(2)根據(1)的判斷結果及相關的計算數據,建立關于
的回歸方程;
(3)現該企業共有2000名生產工人,資金非常充足,為了使得年產能達到最大值,則下一年度共需投入多少資金(單位:千萬元)?
附注:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,(說明:
的導函數為
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《算法統宗》是中國古代數學名著,由明代數學家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的
值為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若、
是兩個相交平面,則在下列命題中,真命題的序號為( )
①若直線,則在平面
內一定不存在與直線
平行的直線.
②若直線,則在平面
內一定存在無數條直線與直線
垂直.
③若直線,則在平面
內不一定存在與直線
垂直的直線.
④若直線,則在平面
內一定存在與直線
垂直的直線.
A. ①③ B. ②③ C. ②④ D. ①④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com